ESTIMATES FOR INVARIANT METRICS ON C-CONVEX DOMAINS

被引:30
|
作者
Nikolov, Nikolai [1 ]
Pflug, Peter [2 ]
Zwonek, Wlodzimierz [3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
[3] Uniwersytet Jagiellonski, Inst Matemat, PL-30348 Krakow, Poland
关键词
C-convex domain; Caratheodory; Kobayashi and Bergman metrics; Bergman kernel; WEAKLY PSEUDOCONVEX DOMAINS; FINITE-TYPE; BOUNDARY LIMITS; BERGMAN-KERNEL; BEHAVIOR; POINTS; HOLDER;
D O I
10.1090/S0002-9947-2011-05273-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometric lower and upper estimates are obtained for invariant metrics on C-convex domains containing no complex lines.
引用
下载
收藏
页码:6245 / 6256
页数:12
相关论文
共 50 条
  • [1] Hyperbolicity of C-convex domains
    Nikolov, Nikolai
    Saracco, Alberto
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2007, 60 (09): : 935 - 938
  • [2] On Maximal Domains for C-Convex Functions and Convex Extensions
    Moller, Manfred
    Nthebe, Thabang M. J.
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (02) : 651 - 658
  • [3] Peak functions in C-convex domains
    Pflug, Peter
    Zwonek, Wlodzimierz
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 27 - 35
  • [4] ON DIFFERENT EXTREMAL BASES FOR C-CONVEX DOMAINS
    Nikolov, Nikolai
    Pflug, Peter
    Thomas, Pascal J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 3223 - 3230
  • [5] An Internal Polya Inequality for C-Convex Domains in Cn
    Gunyuz, O.
    Zakharyuta, V
    MATHEMATICAL NOTES, 2019, 105 (3-4) : 351 - 358
  • [6] Carleson measures on bounded C-convex domains
    Bi, Enchao
    Su, Guicong
    Zhang, Shuo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 196
  • [7] Estimates of invariant distances on "convex" domains
    Nikolov, Nikolai
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1595 - 1605
  • [8] Estimates of invariant distances on “convex” domains
    Nikolai Nikolov
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1595 - 1605
  • [9] Volume approximation of strongly C-convex domains by random polyhedra
    Athreya, Siva
    Gupta, Purvi
    Yogeshwaran, D.
    ADVANCES IN MATHEMATICS, 2023, 432
  • [10] Boundary behavior of the squeezing functions of C-convex domains and plane domains
    Nikolov, N.
    Andreev, L.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (05)