Charge transport in Cr-doped titanium dioxide

被引:19
|
作者
Bak, T. [1 ]
Nowotny, M. K. [1 ]
Sheppard, L. R. [1 ]
Nowotny, J. [1 ]
机构
[1] Univ New S Wales, Ctr Mat Res Energy Convers, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2008年 / 112卷 / 18期
关键词
D O I
10.1021/jp075652p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work reports the effect of chromium on the mobility terms for electrons and electron holes for TiO2 at 1273 K. These data were determined by using the concentration data from the defect disorder diagram derived by the authors and the electrical conductivity data for Cr-doped TiO2 reported by Carpentier et al. [J. Phys. Chem. Solids 1989, 50, 145]. It is shown that chromium incorporates into the TiO2 lattice according to two different mechanism depending on chromium concentration. In the concentration range 1-3 atom %, chromium incorporation leads to the formation of acceptors, which are compensated by tri-valent titanium interstitials. However, in the range 4-5 atom %, the acceptor-type defects formed by chromium incorporated in the titanium sites are compensated by oxygen vacancies. The incorporation of chromium results in a relatively insignificant increase of the mobility of electrons from mu(n) = 0.5 x 10(-5) m(2) V-1 s(-1) for undoped TiO2 to mu(n) = 1.3 x 10(-5) m(2) V-1 s(-1). The incorporation of Cr results in a drop of the mobility of electron holes from mu(p) = 2.95 x 10-5 m(2) V-1 s(-1) for undoped TiO2 to mu(p) = 0.6 x 10-5 m(2) V-1 s(-1) for Cr-doped TiO2. The observed mobility changes are considered in terms of the Cr-induced structural changes of the TiO2 lattice.
引用
收藏
页码:7255 / 7262
页数:8
相关论文
共 50 条
  • [31] MECHANISM OF ELECTRON-TRANSPORT IN CR-DOPED V2O3
    SINHA, APB
    CHANDRASHEKHAR, GV
    HONIG, JM
    JOURNAL OF SOLID STATE CHEMISTRY, 1975, 12 (3-4) : 402 - 405
  • [32] On the Charge State of Titanium in Titanium Dioxide
    Koch, Daniel
    Manzhos, Sergei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (07): : 1593 - 1598
  • [33] SPACE-CHARGE-LIMITED TRIODE USING A CR-DOPED SEMI-INSULATING GAAS
    MIMURA, T
    FUKUTA, M
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1973, ED20 (10) : 906 - 907
  • [34] Ferromagnetism in Cr-doped passivated AlN nanowires
    Kanoun, Mohammed Benali
    Goumri-Said, Souraya
    Schwingenschloegl, Udo
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) : 9287 - 9290
  • [35] CURRENT SATURATION AND OSCILLATION IN CR-DOPED GAAS
    INOUE, T
    OHYAMA, M
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1969, 8 (11) : 1362 - &
  • [36] INFRARED SPECTRAL DETECTIVITY OF CR-DOPED GAAS
    LOOK, DC
    JOURNAL OF APPLIED PHYSICS, 1978, 49 (06) : 3543 - 3545
  • [37] Performance of Cr-doped ZnO for acetone sensing
    Al-Hardan, N. H.
    Abdullah, M. J.
    Aziz, A. Abdul
    APPLIED SURFACE SCIENCE, 2013, 270 : 480 - 485
  • [38] Spectroscopic properties of Cr-doped melilite crystals
    Akiko Sugimoto
    Yukio Nobe
    Takafumi Yamazaki
    Yutaka Anzai
    Kiyoshi Yamagishi
    Yusaburo Segawa
    Humihiko Takei
    Physics and Chemistry of Minerals, 1997, 24 : 326 - 332
  • [39] SEEBECK EFFECT OF UNDOPED AND CR-DOPED NIO
    NOWOTNY, J
    REKAS, M
    SOLID STATE IONICS, 1984, 12 (MAR) : 253 - 261
  • [40] Cr-Doped ZnO Prepared by Electrochemical Deposition
    Lan, C. J.
    Tsay, J. S.
    Lo, C. K.
    Lin, C. A.
    He, J. H.
    Chung, R. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) : D559 - D563