Charge transport in Cr-doped titanium dioxide

被引:19
|
作者
Bak, T. [1 ]
Nowotny, M. K. [1 ]
Sheppard, L. R. [1 ]
Nowotny, J. [1 ]
机构
[1] Univ New S Wales, Ctr Mat Res Energy Convers, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2008年 / 112卷 / 18期
关键词
D O I
10.1021/jp075652p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work reports the effect of chromium on the mobility terms for electrons and electron holes for TiO2 at 1273 K. These data were determined by using the concentration data from the defect disorder diagram derived by the authors and the electrical conductivity data for Cr-doped TiO2 reported by Carpentier et al. [J. Phys. Chem. Solids 1989, 50, 145]. It is shown that chromium incorporates into the TiO2 lattice according to two different mechanism depending on chromium concentration. In the concentration range 1-3 atom %, chromium incorporation leads to the formation of acceptors, which are compensated by tri-valent titanium interstitials. However, in the range 4-5 atom %, the acceptor-type defects formed by chromium incorporated in the titanium sites are compensated by oxygen vacancies. The incorporation of chromium results in a relatively insignificant increase of the mobility of electrons from mu(n) = 0.5 x 10(-5) m(2) V-1 s(-1) for undoped TiO2 to mu(n) = 1.3 x 10(-5) m(2) V-1 s(-1). The incorporation of Cr results in a drop of the mobility of electron holes from mu(p) = 2.95 x 10-5 m(2) V-1 s(-1) for undoped TiO2 to mu(p) = 0.6 x 10-5 m(2) V-1 s(-1) for Cr-doped TiO2. The observed mobility changes are considered in terms of the Cr-induced structural changes of the TiO2 lattice.
引用
收藏
页码:7255 / 7262
页数:8
相关论文
共 50 条
  • [1] Ferromagnetism at room temperature in Cr-doped anodic titanium dioxide nanotubes
    Liao, Yulong
    Zhang, Huaiwu
    Li, Jie
    Yu, Guoliang
    Zhong, Zhiyong
    Bai, Feiming
    Jia, Lijun
    Zhang, Shihong
    Zhong, Peng
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [2] Charge transport in polycrystalline titanium dioxide
    Bak, T
    Burg, T
    Kang, SJL
    Nowotny, J
    Rekas, M
    Sheppard, L
    Sorrell, CC
    Vance, ER
    Yoshida, Y
    Yamawaki, M
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (07) : 1089 - 1095
  • [3] Transport properties of Cr-doped β-FeSi2
    Arushanov, E
    Schön, JH
    Lange, H
    THIN SOLID FILMS, 2001, 381 (02) : 282 - 286
  • [4] Charge transport in porous nanocrystalline titanium dioxide
    Eppler, AA
    Ballard, IN
    Nelson, J
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2): : 197 - 202
  • [5] Modulation of structural, morphological and electrical charge transport property of Cr-doped ZnO nanomaterials prepared by chemical process
    Debnath, Tanumoy
    Chakraborty, Tanmoy
    Bandyopadhyay, Atul
    Sharma, Shivam
    Mahapatra, Abhik Sinha
    Das, Sukhen
    Sutradhar, Soumyaditya
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 280
  • [6] Oxidation state and localization of chromium ions in Cr-doped cassiterite and Cr-doped malayaite
    Lopez-Navarrete, E
    Caballero, A
    Orera, VM
    Lázaro, FJ
    Ocaña, M
    ACTA MATERIALIA, 2003, 51 (08) : 2371 - 2381
  • [7] Oxide ion transport in undoped and Cr-doped LaCoO3-δ
    Tsvetkov, D. S.
    Zuev, A. Yu.
    Vylkov, A. I.
    Petrov, A. N.
    SOLID STATE IONICS, 2007, 178 (25-26) : 1458 - 1462
  • [8] Ferromagnetism in Cr-doped Ge
    Choi, S
    Hong, SC
    Cho, S
    Kim, Y
    Ketterson, JB
    Jung, CU
    Rhie, K
    Kim, BJ
    Kim, YC
    APPLIED PHYSICS LETTERS, 2002, 81 (19) : 3606 - 3608
  • [9] Cr-doped malayaites with the lanthanides
    Zvonkova, M.
    Luxova, J.
    Trojan, J.
    Trojan, M.
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 2013, : 226 - 231
  • [10] Cr-doped Tialite Pigments
    Kim, Yeon-Ju
    Lee, Byung-Ha
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2011, 21 (09): : 515 - 519