HyperNEAT Versus RL PoWER for Online Gait Learning in Modular Robots

被引:2
|
作者
D'Angelo, Massimiliano [1 ]
Weel, Berend [2 ]
Eiben, A. E. [2 ]
机构
[1] Univ Roma La Sapienza, Rome, Italy
[2] Vrije Univ Amsterdam, Amsterdam, Netherlands
来源
关键词
Embodied artificial evolution; Modular robots; Artificial life; Online gait learning; Reinforcement learning; HyperNEAT; CENTRAL PATTERN GENERATORS; LOCOMOTION;
D O I
10.1007/978-3-662-45523-4_63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses a principal problem of in vivo evolution of modular multi-cellular robots, where robot 'babies' can be produced with arbitrary shapes and sizes. In such a system we need a generic learning mechanism that enables newborn morphologies to obtain a suitable gait quickly after 'birth'. In this study we investigate and compare the reinforcement learning method RL PoWeR with HyperNEAT. We conduct simulation experiments using robot morphologies with different size and complexity. The experiments give insights into the differences in solution quality and algorithm efficiency, suggesting that reinforcement learning is the preferred option for this online learning problem.
引用
收藏
页码:777 / 788
页数:12
相关论文
共 50 条
  • [1] HyperNEAT for Locomotion Control in Modular Robots
    Haasdijk, Evert
    Rusu, Andrei A.
    Eiben, A. E.
    [J]. EVOLVABLE SYSTEMS: FROM BIOLOGY TO HARDWARE, 2010, 6274 : 169 - 180
  • [2] Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes
    D'Angelo, Massimiliano
    Weel, Berend
    Eiben, A. E.
    [J]. THEORY AND PRACTICE OF NATURAL COMPUTING, 2013, 8273 : 45 - 56
  • [3] Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes
    Weel, Berend
    D'Angelo, M.
    Haasdijk, Evert
    Eiben, A. E.
    [J]. ARTIFICIAL LIFE, 2017, 23 (01) : 80 - 104
  • [4] Time Delays in a HyperNEAT Network to Improve Gait Learning for Legged Robots
    Silva, Oscar
    Sigel, Pascal
    Escobar, Maria-Jose
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4222 - 4228
  • [5] Improving RL Power for On-Line Evolution of Gaits in Modular Robots
    Jelisavcic, Milan
    De Carlo, Matteo
    Haasdijk, Evert
    Eiben, A. E.
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [6] Hierarchical Gait Generation for Modular Robots Using Deep Reinforcement Learning
    Wang, Jiayu
    Hu, Chuxiong
    Zhu, Yu
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2021,
  • [7] Distributed Online Learning of Central Pattern Generators in Modular Robots
    Christensen, David Johan
    Sproewitz, Alexander
    Ijspeert, Auke Jan
    [J]. FROM ANIMALS TO ANIMATS 11, 2010, 6226 : 402 - +
  • [8] Gait Synthesis for Modular Soft Robots
    Hamill, Scott
    Peele, Bryan
    Ferenz, Peter
    Westwater, Max
    Shepherd, Robert F.
    Kress-Gazit, Hadas
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2017, 1 : 669 - 678
  • [9] Simultaneous versus incremental learning of multiple skills by modular robots
    Rossi, C.
    Eiben, A. E.
    [J]. EVOLUTIONARY INTELLIGENCE, 2014, 7 (02) : 119 - 131
  • [10] Learning to move in modular robots using central pattern generators and online optimization
    Sproewitz, Alexander
    Moeckel, Rico
    Maye, Jerome
    Ijspeert, Auke Jan
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2008, 27 (3-4): : 423 - 443