A 2,3-dihydroxybiphenyl (2,3-DHBP) dioxygenase gene from a Rhodococcus sp. strain, named RrbphCI and involved in the degradation of polychlorinated biphenyls (PCBs), was synthesized. RrbphCI was expressed in Escherichia coli and its encoded enzyme was purified. SDS-PAGE analysis indicated that the size of the protein encoded by RrbphCI was about 32 kDa. The activity of the 2,3-DHBP dioxygenase was 82.8 U/mg when the substrate was 2,3-DHBP, with optimum pH 8.0 at 30A degrees C, and optimum temperature was 40A degrees C at pH 8.0. The RrbphCI gene was transformed into Pseudomonas putida strain EG11, to determine the ability of the enzyme to degrade 2,3-DHBP. The wild type EG11 degraded 61.86% of supplied 2,3-DHBP and the transformed EG11 (hosting the RrbphCI gene) utilized 52.68% after 2 min of treatment at 30A degrees C. The overexpressed and purified enzyme was able to degrade 2,3-DHBP. The 2,3-DHBP dioxygenase is a key enzyme in the PCB degradation pathway. RrbphCI and its encoded 2,3-DHBP dioxygenase may have transgenic applications in bioremediation of PCBs.