A Parametric Approach to List Decoding of Reed-Solomon Codes Using Interpolation

被引:9
|
作者
Ali, Mortuza [1 ]
Kuijper, Margreta [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Grobner basis; list decoding; predictable leading monomial; rational interpolation; Reed-Solomon code; ALGEBRAIC-GEOMETRY; ALGORITHMS; BASES;
D O I
10.1109/TIT.2011.2165803
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a minimal list decoding algorithm for Reed-Solomon (RS) codes. Minimal list decoding for a code C refers to list decoding with radius L, where L is the minimum of the distances between the received word L and any codeword in C. We consider the problem of determining the value of L as well as determining all the codewords at distance L. Our approach involves a parametrization of interpolating polynomials of a minimal Grobner basis G. We present two efficient ways to compute G. We also show that so-called re-encoding can be used to further reduce the complexity. We then demonstrate how our parametric approach can be solved by a computationally feasible rational curve fitting solution from a recent paper by Wu. Besides, we present an algorithm to compute the minimum multiplicity as well as the optimal values of the parameters associated with this multiplicity, which results in overall savings in both memory and computation.
引用
收藏
页码:6718 / 6728
页数:11
相关论文
共 50 条
  • [1] Interpolation in list decoding of Reed-Solomon codes
    P. V. Trifonov
    [J]. Problems of Information Transmission, 2007, 43 : 190 - 198
  • [2] Interpolation in list decoding of Reed-Solomon codes
    Trifonov, P. V.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (03) : 190 - 198
  • [3] Iterative list decoding approach for Reed-Solomon codes
    Zhang Zhijun
    Niu Kai
    Dong Chao
    [J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26 (03) : 8 - 14
  • [4] Iterative list decoding approach for reed-solomon codes
    Zhijun, Zhang
    Kai, Niu
    Chao, Dong
    [J]. Journal of China Universities of Posts and Telecommunications, 2019, 26 (03): : 8 - 14
  • [5] Divide-and-conquer interpolation for list decoding of Reed-Solomon codes
    Ma, J
    Trifonov, P
    Vardy, A
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 387 - 387
  • [6] Limits to list decoding Reed-Solomon codes
    Guruswami, Venkatesan
    Rudra, Atri
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) : 3642 - 3649
  • [7] Burst List Decoding of Interleaved Reed-Solomon Codes
    Kolan, Tom
    Roth, Ron M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 182 - 190
  • [8] Subspace polynomials and list decoding of Reed-Solomon codes
    Ben-Sasson, Eli
    Kopparty, Swastik
    Radhakrishnan, Jaikumar
    [J]. 47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 207 - +
  • [9] Bounds on List Decoding of Linearized Reed-Solomon Codes
    Puchinger, Sven
    Rosenkilde, Johan
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 154 - 159
  • [10] A List Decoding Algorithm for Practical Reed-Solomon codes
    Egorov, Sergey
    [J]. PROCEEDINGS OF IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2013), 2013,