A branch-and-cut algorithm for the maximum cardinality stable set problem

被引:35
|
作者
Rossi, F [1 ]
Smriglio, S [1 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67010 Coppito, Laquila, Italy
关键词
branch-and-cut; stable set; rank inequality;
D O I
10.1016/S0167-6377(00)00060-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a branch-and-cut algorithm fur the Maximum Cardinality Stable Set problem. Rank constraints of general structure are generated by executing clique separation algorithms on a modified graph obtained with edge projections. A branching scheme exploiting the available inequalities is also introduced. A computational experience on the DIMACS benchmark graphs validates the effectiveness of the approach. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [1] A branch-and-cut algorithm for the maximum covering cycle problem
    Eduardo Álvarez-Miranda
    Markus Sinnl
    [J]. Annals of Operations Research, 2020, 284 : 487 - 499
  • [2] A branch-and-cut algorithm for the maximum covering cycle problem
    Alvarez-Miranda, Eduardo
    Sinnl, Markus
    [J]. ANNALS OF OPERATIONS RESEARCH, 2020, 284 (02) : 487 - 499
  • [3] A branch-and-cut algorithm for the maximum benefit Chinese postman problem
    Ángel Corberán
    Isaac Plana
    Antonio M. Rodríguez-Chía
    José M. Sanchis
    [J]. Mathematical Programming, 2013, 141 : 21 - 48
  • [4] A branch-and-cut algorithm for the maximum benefit Chinese postman problem
    Corberan, Angel
    Plana, Isaac
    Rodriguez-Chia, Antonio M.
    Sanchis, Jose M.
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 21 - 48
  • [5] Polyhedral results and a Branch-and-cut algorithm for the k-cardinality tree problem
    Simonetti, Luidi
    da Cunha, Alexandre Salles
    Lucena, Abilio
    [J]. MATHEMATICAL PROGRAMMING, 2013, 142 (1-2) : 511 - 538
  • [6] A new formulation and a branch-and-cut algorithm for the set orienteering problem
    Archetti, C.
    Carrabs, F.
    Cerulli, R.
    Laureana, F.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 314 (02) : 446 - 465
  • [7] A Branch and Cut solver for the maximum stable set problem
    Rebennack, Steffen
    Oswald, Marcus
    Theis, Dirk Oliver
    Seitz, Hanna
    Reinelt, Gerhard
    Pardalos, Panos M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 21 (04) : 434 - 457
  • [8] A Branch and Cut solver for the maximum stable set problem
    Steffen Rebennack
    Marcus Oswald
    Dirk Oliver Theis
    Hanna Seitz
    Gerhard Reinelt
    Panos M. Pardalos
    [J]. Journal of Combinatorial Optimization, 2011, 21 : 434 - 457
  • [9] A branch-and-cut algorithm for the equicut problem
    Lorenzo Brunetta
    Michele Conforti
    Giovanni Rinaldi
    [J]. Mathematical Programming, 1997, 78 : 243 - 263
  • [10] A branch-and-cut algorithm for the equicut problem
    Brunetta, L
    Conforti, M
    Rinaldi, G
    [J]. MATHEMATICAL PROGRAMMING, 1997, 78 (02) : 243 - 263