Deep convolutional neural networks for accurate somatic mutation detection

被引:70
|
作者
Sahraeian, Sayed Mohammad Ebrahim [1 ]
Liu, Ruolin [1 ]
Lau, Bayo [1 ,2 ]
Podesta, Karl [2 ]
Mohiyuddin, Marghoob [1 ]
Lam, Hugo Y. K. [1 ]
机构
[1] Roche Sequencing Solut, Belmont, CA 94002 USA
[2] Microsoft Azure, Dublin D18 P521 18, Ireland
关键词
POINT MUTATIONS; CANCER; ALGORITHMS; SIMULATION;
D O I
10.1038/s41467-019-09027-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
' Accurate detection of somatic mutations is still a challenge in cancer analysis. Here we present NeuSomatic, the first convolutional neural network approach for somatic mutation detection, which significantly outperforms previous methods on different sequencing platforms, sequencing strategies, and tumor purities. NeuSomatic summarizes sequence alignments into small matrices and incorporates more than a hundred features to capture mutation signals effectively. It can be used universally as a stand-alone somatic mutation detection method or with an ensemble of existing methods to achieve the highest accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep convolutional neural networks for accurate somatic mutation detection
    Sayed Mohammad Ebrahim Sahraeian
    Ruolin Liu
    Bayo Lau
    Karl Podesta
    Marghoob Mohiyuddin
    Hugo Y. K. Lam
    [J]. Nature Communications, 10
  • [2] Accurate lithography hotspot detection using deep convolutional neural networks
    Shin, Moojoon
    Lee, Jee-Hyong
    [J]. JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2016, 15 (04):
  • [3] Deep Convolutional Neural Networks for DGA Detection
    Catania, Carlos
    Garcia, Sebastian
    Torres, Pablo
    [J]. COMPUTER SCIENCE - CACIC 2018, 2019, 995 : 327 - 340
  • [4] Stenosis Detection with Deep Convolutional Neural Networks
    Antczak, Karol
    Liberadzki, Lukasz
    [J]. 22ND INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATIONS AND COMPUTERS (CSCC 2018), 2018, 210
  • [5] Deep Convolutional Neural Networks for pedestrian detection
    Tome, D.
    Monti, F.
    Baroffio, L.
    Bondi, L.
    Tagliasacchi, M.
    Tubaro, S.
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 482 - 489
  • [6] Smile detection in the wild with deep convolutional neural networks
    Junkai Chen
    Qihao Ou
    Zheru Chi
    Hong Fu
    [J]. Machine Vision and Applications, 2017, 28 : 173 - 183
  • [7] Evaluation of deep convolutional neural networks for glaucoma detection
    Phan, Sang
    Satoh, Shin'ichi
    Yoda, Yoshioki
    Kashiwagi, Kenji
    Oshika, Tetsuro
    Oshika, Tetsuro
    Hasegawa, Takashi
    Kashiwagi, Kenji
    Miyake, Masahiro
    Sakamoto, Taiji
    Yoshitomi, Takeshi
    Inatani, Masaru
    Yamamoto, Tetsuya
    Sugiyama, Kazuhisa
    Nakamura, Makoto
    Tsujikawa, Akitaka
    Sotozono, Chie
    Sonoda, Koh-Hei
    Terasaki, Hiroko
    Ogura, Yuichiro
    Fukuchi, Takeo
    Shiraga, Fumio
    Nishida, Kohji
    Nakazawa, Toru
    Aihara, Makoto
    Yamashita, Hidetoshi
    Hiyoyuki, Iijima
    [J]. JAPANESE JOURNAL OF OPHTHALMOLOGY, 2019, 63 (03) : 276 - 283
  • [8] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193
  • [9] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    [J]. 2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [10] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    [J]. 2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153