Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability

被引:336
|
作者
Jiang, Jiexuan [1 ]
Wang, Qian [1 ]
Jin, Zhiwen [1 ]
Zhang, Xisheng [1 ]
Lei, Jie [1 ]
Bin, Haijun [2 ]
Zhang, Zhi-Guo [2 ]
Li, Yongfang [2 ]
Liu, Shengzhong [1 ,3 ]
机构
[1] Shaanxi Normal Univ, Shaanxi Engn Lab Adv Energy Technol, Key Lab Appl Surface & Colloid Chem,Natl Minist E, Sch Mat Sci & Engn,Shaanxi Key Lab Adv Energy Dev, Xian 710119, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Key Lab Organ Solids, Inst Chem, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, IChEM, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国博士后科学基金;
关键词
perovskite films; polymers; solar cells; stability; ELECTRON-TRANSPORT LAYER; HALIDE PEROVSKITES; PERFORMANCE; PASSIVATION; HYSTERESIS; ENHANCEMENT; ENERGY;
D O I
10.1002/aenm.201701757
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Each component layer in a perovskite solar cell plays an important role in the cell performance. Here, a few types of polymers including representative p-type and n-type semiconductors, and a classical insulator, are chosen to dope into a perovskite film. The long-chain polymer helps to form a network among the perovskite crystalline grains, as witnessed by the improved film morphology and device stability. The dewetting process is greatly suppressed by the cross-linking effect of the polymer chains, thereby resulting in uniform perovskite films with large grain sizes. Moreover, it is found that the polymer-doped perovskite shows a reduced trap-state density, likely due to the polymer effectively passivating the perovskite grain surface. Meanwhile the doped polymer formed a bridge between grains for efficient charge transport. Using this approach, the solar cell efficiency is improved from 17.43% to as high as 19.19%, with a much improved stability. As it is not required for the polymer to have a strict energy level matching with the perovskite, in principle, one may use a variety of polymers for this type of device design.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability
    Wei, Jing
    Guo, Fengwan
    Wang, Xi
    Xu, Kun
    Lei, Ming
    Liang, Yongqi
    Zhao, Yicheng
    Xu, Dongsheng
    ADVANCED MATERIALS, 2018, 30 (52)
  • [2] Polymer strategies for high-efficiency and stable perovskite solar cells
    Wang, Sisi
    Zhang, Zhipeng
    Tang, Zikang
    Su, Chenliang
    Huang, Wei
    Li, Ying
    Xing, Guichuan
    NANO ENERGY, 2021, 82
  • [3] Methodologies to Improve the Stability of High-Efficiency Perovskite Solar Cells
    Sandhu, Sanjay
    Park, Nam-Gyu
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (12): : 1544 - 1557
  • [4] High-Efficiency Perovskite Solar Cells
    Kim, Jin Young
    Lee, Jin-Wook
    Jung, Hyun Suk
    Shin, Hyunjung
    Park, Nam-Gyu
    CHEMICAL REVIEWS, 2020, 120 (15) : 7867 - 7918
  • [5] Natural Material from Carnauba Wax to Enhance the Moisture Stability for High-efficiency Perovskite Solar Cells
    Kong, Xiangyu
    Hou, Lizhi
    Qian, Yingjun
    Wang, Haitao
    Xu, Zhengjie
    INTERNATIONAL CONFERENCE ON OPTOELECTRONIC MATERIALS AND DEVICES (ICOMD 2021), 2022, 12164
  • [6] Improving Operational Stability of High-Efficiency Inverted Perovskite Solar Cells
    Zhu, Kai
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [7] High-efficiency tandem perovskite solar cells
    Colin D. Bailie
    Michael D. McGehee
    MRS Bulletin, 2015, 40 : 681 - 685
  • [8] High-efficiency tandem perovskite solar cells
    Bailie, Colin D.
    McGehee, Michael D.
    MRS BULLETIN, 2015, 40 (08) : 681 - 685
  • [9] Perovskite tandem solar cells with improved efficiency and stability
    Zhengjie Zhu
    Kaitian Mao
    Jixian Xu
    Journal of Energy Chemistry , 2021, (07) : 219 - 232
  • [10] Perovskite tandem solar cells with improved efficiency and stability
    Zhu, Zhengjie
    Mao, Kaitian
    Xu, Jixian
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 219 - 232