Conformation-independent quantitative structure-property relationships study on water solubility of pesticides

被引:20
|
作者
Fioressi, Silvina E. [1 ]
Bacelo, Daniel E. [1 ]
Rojas, Cristian [2 ]
Aranda, Jose F. [3 ]
Duchowicz, Pablo R. [3 ]
机构
[1] Univ Belgrano, Fac Ciencias Exactas & Nat, Dept Quim, Villanueva 1324, RA-1426 Buenos Aires, DF, Argentina
[2] Univ Azuay, Fac Ciencia & Tecnol, Ave 24 Mayo 7-77 & Hernan Malo, Cuenca, Ecuador
[3] UNLP, CONICET, Inst Invest Fis Quim Teor & Aplicadas INIFTA, Diag 113 & 64,CC 16,Sucursal 4, RA-1900 La Plata, Buenos Aires, Argentina
关键词
Quantitative structure-property relationships; Pesticides; Water solubility; Molecular descriptors; CORAL software; IN-SILICO PREDICTION; AQUEOUS SOLUBILITY; PHYSICOCHEMICAL PROPERTIES; RISK-ASSESSMENT; QSPR MODELS; QSAR; VALIDATION; AGROCHEMICALS; DESCRIPTORS; TOXICITY;
D O I
10.1016/j.ecoenv.2018.12.056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water solubility is a key physicochemical parameter in pesticide control and regulation, although sometimes its experimental determination is not an easy task. In this study, we present Quantitative Structure-Property Relationships (QSPRs) for predicting the water solubility at 20 degrees C of 1211 approved heterogeneous pesticide compounds, collected from the online Pesticides Properties Data Base (PPDB). Validated and generally applicable Multivariable Linear Regression (MLR) models were established, including molecular descriptors carrying constitutional and topological aspects of the analyzed compounds. The most representative descriptors were selected from the exploration of a large number of about 18,000 structural variables. A hybrid approach that involves a molecular descriptor, a fingerprint, and a flexible descriptor showed the best predictive performance.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [1] Quantitative structure-property relationships for pesticides in biopartitioning micellar chromatography
    Ma, WP
    Luan, F
    Zhang, HX
    Zhang, XY
    Liu, MC
    Hu, ZD
    Fan, BT
    JOURNAL OF CHROMATOGRAPHY A, 2006, 1113 (1-2) : 140 - 147
  • [2] Structure-property relationships for solubility of monosaccharides
    Jantschi, Lorentz
    APPLIED WATER SCIENCE, 2019, 9 (02)
  • [3] Modeling solubility in supercritical carbon dioxide using quantitative structure-property relationships
    Valenzuela, Loreto M.
    Reveco-Chilla, Andrea G.
    del Valle, Jose M.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 94 : 113 - 122
  • [4] Quantitative Structure-Property Relationships for Aryldiazonia
    Pankratov, Alexei N.
    Zhelezko, Oxana I.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2002, 3 (07): : 822 - 855
  • [5] Solubility study of hydrogen in direct coal liquefaction solvent based on quantitative structure-property relationships model
    Zhang, Xiao-Bin
    Rajendran, A.
    Wang, Xing-Bao
    Li, Wen-Ying
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 64 : 250 - 258
  • [6] A STRUCTURE-PROPERTY STUDY OF THE SOLUBILITY OF ALIPHATIC-ALCOHOLS IN WATER
    LUCIC, B
    NIKOLIC, S
    TRINAJSTIC, N
    JURIC, A
    MIHALIC, Z
    CROATICA CHEMICA ACTA, 1995, 68 (03) : 417 - 434
  • [7] A quantitative structure-property relationship study of C-60 solubility
    Smith, AL
    Wilson, LY
    Famini, GR
    PROCEEDINGS OF THE SYMPOSIUM ON RECENT ADVANCES IN THE CHEMISTRY AND PHYSICS OF FULLERENES AND RELATED MATERIALS, VOL 3, 1996, 96 (10): : 53 - 62
  • [8] Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships
    Cheng, AL
    Merz, KM
    JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (17) : 3572 - 3580
  • [9] Quantitative Structure-Property Relationships for Drug Solubility Prediction Using Evolved Neural Networks
    Cheung, Mars
    Johnson, Stephen
    Hecht, David
    Fogel, Gary B.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 688 - +
  • [10] Interpretation of quantitative structure-property and -activity relationships
    Katritzky, AR
    Petrukhin, R
    Tatham, D
    Basak, S
    Benfenati, E
    Karelson, M
    Maran, U
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (03): : 679 - 685