Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey

被引:16
|
作者
Zhou, Xingchen [1 ,2 ]
Gong, Yan [1 ,3 ]
Meng, Xian-Min [1 ]
Cao, Ye [1 ,2 ]
Chen, Xuelei [2 ,4 ,5 ]
Chen, Zhu [6 ]
Du, Wei [6 ]
Fu, Liping [6 ]
Luo, Zhijian [6 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, 20A Datun Rd, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, NAOC, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Sci Ctr China Space Stn Telescope, Natl Astron Observ, 20A Datun Rd, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Natl Astron Observ, Key Lab Computat Astrophys, 20A Datun Rd, Beijing 100101, Peoples R China
[5] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[6] Shanghai Normal Univ, Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: statistical; techniques: image processing; techniques: photometric; galaxies: distances and redshifts; galaxies: photometry; large-scale structure of Structure; DARK ENERGY SURVEY; TELESCOPE ADVANCED CAMERA; DIGITAL SKY SURVEY; SPACE-TELESCOPE; WIDE-FIELD; COSMOLOGY; CALIBRATION; UNIVERSE; CATALOG;
D O I
10.1093/mnras/stac786
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The accuracy of galaxy photometric redshift (photo-z) can significantly affect the analysis of weak gravitational lensing measurements, especially for future high-precision surveys. In this work, we try to extract photo-z information from both galaxy flux and image data expected to be obtained by China Space Station Telescope (CSST) using neural networks. We generate mock galaxy images based on the observational images from the Advanced Camera for Surveys of Hubble Space Telescope (HST-ACS) and COSMOS catalogues, considering the CSST instrumental effects. Galaxy flux data are then measured directly from these images by aperture photometry. The multilayer perceptron (MLP) and convolutional neural network (CNN) are constructed to predict photo-z from fluxes and images, respectively. We also propose to use an efficient hybrid network, which combines the MLP and CNN, by employing the transfer learning techniques to investigate the improvement of the result with both flux and image data included. We find that the photo-z accuracy and outlier fraction can achieve sigma(NMAD) = 0.023 and eta = 1.43 per cent for the MLP using flux data only, and sigma(NMAD) = 0.025 and eta = 1.21 per cent for the CNN using image data only. The result can be further improved in high efficiency as sigma(NMAD) = 0.020 and eta = 0.90 per cent for the hybrid transfer network. These approaches result in similar galaxy median and mean redshifts 0.8 and 0.9, respectively, for the redshift range from 0 to 4. This indicates that our networks can effectively and properly extract photo-z information from the CSST galaxy flux and image data.
引用
收藏
页码:4593 / 4603
页数:11
相关论文
共 50 条
  • [1] Photometric Redshift Estimates using Bayesian Neural Networks in the CSST Survey
    Xingchen Zhou
    Yan Gong
    Xian-Min Meng
    Xuelei Chen
    Zhu Chen
    Wei Du
    Liping Fu
    Zhijian Luo
    Research in Astronomy and Astrophysics, 2022, 22 (11) : 194 - 210
  • [2] Photometric Redshift Estimates using Bayesian Neural Networks in the CSST Survey
    Zhou, Xingchen
    Gong, Yan
    Meng, Xian-Min
    Chen, Xuelei
    Chen, Zhu
    Du, Wei
    Fu, Liping
    Luo, Zhijian
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (11)
  • [3] Photometric redshift estimation for CSST survey with LSTM neural networks
    Luo, Zhijian
    Li, Yicheng
    Lu, Junhao
    Chen, Zhu
    Fu, Liping
    Zhang, Shaohua
    Xiao, Hubing
    Du, Wei
    Gong, Yan
    Shu, Chenggang
    Ma, Wenwen
    Meng, Xianmin
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (02) : 1844 - 1855
  • [4] Estimating photometric redshift from mock flux for CSST survey by using weighted Random Forest
    Lu, Junhao
    Luo, Zhijian
    Chen, Zhu
    Fu, Liping
    Du, Wei
    Gong, Yan
    Li, Yicheng
    Meng, Xian-Min
    Tang, Zhirui
    Zhang, Shaohua
    Shu, Chenggang
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 12140 - 12153
  • [5] Extracting H α flux from photometric data in the J-PLUS survey
    Vilella-Rojo, G.
    Viironen, K.
    López-Sanjuan, C.
    Cenarro, A.J.
    Varela, J.
    Díaz-García, L.A.
    Cristóbal-Hornillos, D.
    Ederoclite, A.
    Marín-Franch, A.
    Moles, M.
    Astronomy and Astrophysics, 2015, 580
  • [6] Extracting Hα flux from photometric data in the J-PLUS survey
    Vilella-Rojo, G.
    Viironen, K.
    Lopez-Sanjuan, C.
    Cenarro, A. J.
    Varela, J.
    Diaz-Garcia, L. A.
    Cristobal-Hornillos, D.
    Ederoclite, A.
    Marin-Franch, A.
    Moles, M.
    ASTRONOMY & ASTROPHYSICS, 2015, 580
  • [7] A galaxy photometric redshift catalog for the sloan digital sky survey Data Release 6
    Oyaizu, Hiroaki
    Lima, Marcos
    Cunha, Carlos E.
    Lin, Huan
    Frieman, Joshua
    Sheldon, Erin S.
    ASTROPHYSICAL JOURNAL, 2008, 674 (02): : 768 - 783
  • [8] A photometric redshift galaxy catalog from the Red-Sequence Cluster Survey
    Hsieh, BC
    Yee, HKC
    Lin, H
    Gladders, MD
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2005, 158 (02): : 161 - 177
  • [9] An Algorithm for Redshift Estimation of Photometric Images Using Convolutional Neural Networks
    Wu Kuang
    Sun Chun
    Cao Guan-long
    Qiu Bo
    Yao Lin
    Zhang Ming-ru
    Zhang Li-wen
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2529 - 2535
  • [10] Photometric redshift estimation with convolutional neural networks and galaxy images: Case study of resolving biases in data-driven methods
    Lin, Q.
    Fouchez, D.
    Pasquet, J.
    Treyer, M.
    Ouahmed, R. Ait
    Arnouts, S.
    Ilbert, O.
    ASTRONOMY & ASTROPHYSICS, 2022, 662