ProNGF/NGF Modulates Autophagy and Apoptosis through PI3K/Akt/mTOR and ERK Signaling Pathways following Cerebral Ischemia-Reperfusion in Rats

被引:10
|
作者
Li, Yanbo [1 ]
Wu, Fengbo [1 ]
Zhou, Muke [1 ]
Zhou, Jie [1 ]
Cui, Shuhui [1 ]
Guo, Jian [1 ]
Wu, Junhao [2 ]
He, Li [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Neurol, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Otolaryngol Head & Neck Surg, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
NERVE GROWTH-FACTOR; NEURONAL INJURY; NGF; PROTECTS; STROKE; CELLS; ACTIVATION; EXPRESSION; RECOVERY; SURVIVAL;
D O I
10.1155/2022/6098191
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
NGF is involved in the process of autophagy; however, the underlying mechanisms of proNGF/NGF on autophagy in cerebral ischemia-reperfusion (CIR) remain unclear. This study explored the potential pathway of proNGF/NGF in mediating autophagy and apoptosis and thereby contributed to poststroke neurological rehabilitation. In this study, PC12 cell lines and male SD rats were used to simulate CIR; it was found that within 24h reperfusion, proNGF was the predominant form of Ngf while after 24h NGF was produced by proNGF transformation. The mature NGF was found to protect neurons against autophagic and apoptotic damage caused by CIR, but proNGF can cause both autophagic and apoptotic neuronal damage. The protective effect of NGF is associated with the activation of the PI3K/Akt/mTOR and ERK pathway and, as well as the change of autophagy-related proteins. On the other hand, proNGF promoted the ERK pathway increasing autophagy and affected the apoptosis-related proteins in vivo and in vitro. These results were also verified in male SD rats with CIR that neurological deficit caused by CIR can be rescued by recombinant and wild-type NGF, and vice-versa by proNGF.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Li, Jianli
    Wang, Keyan
    Liu, Meinv
    He, Jinhua
    Zhang, Huanhuan
    Liu, Huan
    [J]. JOURNAL OF MOLECULAR HISTOLOGY, 2023, 54 (03) : 173 - 181
  • [2] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Jianli Li
    Keyan Wang
    Meinv Liu
    Jinhua He
    Huanhuan Zhang
    Huan Liu
    [J]. Journal of Molecular Histology, 2023, 54 : 173 - 181
  • [3] Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway
    Li, Ruoqi
    Zheng, Yingyi
    Zhang, Jiaxue
    Zhou, Yuan
    Fan, Xiang
    [J]. PHYTOMEDICINE, 2023, 110
  • [4] Apatinib induces apoptosis and autophagy via the PI3K/AKT/mTOR and MAPK/ERK signaling pathways in neuroblastoma
    Yu, Xiying
    Fan, Hongjun
    Jiang, Xingran
    Zheng, Wei
    Yang, Yanan
    Jin, Mei
    Ma, Xiaoli
    Jiang, Wei
    [J]. ONCOLOGY LETTERS, 2020, 20 (04)
  • [5] Research on protective mechanism of ibuprofen in myocardial ischemia-reperfusion injury in rats through the PI3K/Akt/mTOR signaling pathway
    Chi, Y.
    Ma, Q.
    Ding, X-Q
    Qin, X.
    Wang, C.
    Zhang, J.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (10) : 4465 - 4473
  • [6] Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice
    Jin, Lei
    Mo, Yun
    Yue, Er-Li
    Liu, Yuan
    Liu, Kang-Yong
    [J]. BIOENGINEERED, 2021, 12 (01) : 7432 - 7445
  • [7] Cornin protects astrocytes against autophagy induced by cerebral ischemia-reperfusion via PI3K/Akt/mTOR pathway
    LAN Tian-chi
    XU Yang-yang
    LI Shu-cui
    LIU Hui
    ZHU Hai-bo
    ZHANG Shu-ping
    [J]. 中国药理学与毒理学杂志, 2019, (10) : 845 - 846
  • [8] Effects of Oxycodone on Renal Ischemia-Reperfusion Injury in Rats Through PI3K/Akt Signaling Pathway
    Wang, Yuhong
    Yan, Pihong
    Qu, Mingxuan
    Liu, Yunqi
    [J]. PANMINERVA MEDICA, 2021,
  • [9] Glutamine protects myocardial ischemia-reperfusion injury in rats through the PI3K/Akt signaling pathway
    Cui, Z-H
    Zhang, X-J
    Shang, H-Q
    Wang, X.
    Rong, D.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (01) : 444 - 451
  • [10] Rimonabant ameliorates hepatic ischemia/reperfusion injury in rats: Involvement of autophagy via modulating ERK- and PI3K/AKT-mTOR pathways
    Rezq, Samar
    Hassan, Reham
    Mahmoud, Mona F.
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 100