Experimentally optimal ν in support vector regression for different noise models and parameter settings

被引:102
|
作者
Chalimourda, A [1 ]
Schölkopf, B
Smola, AJ
机构
[1] Ruhr Univ Bochum, Inst Neuroinformat, D-44780 Bochum, Germany
[2] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
[3] Australian Natl Univ, Canberra, ACT 0200, Australia
关键词
support vector machines; nu-support vector machines; support vector regression; support vector machine parameters; optimal nu; Gaussian kernel; model selection; risk minimization;
D O I
10.1016/S0893-6080(03)00209-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Support Vector (SV) regression, a parameter nu controls the number of Support Vectors and the number of points that come to lie outside of the so-called epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of nu that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex 'real-world' data sets. Based on our results on the role of the nu-SVM parameters, we discuss various model selection methods. (C) 2003 Published by Elsevier Ltd.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 50 条
  • [1] Experimentally optimal v in support vector regression for different noise models and parameter settings
    Chalimourda, A
    Schölkopf, B
    Smola, AJ
    [J]. NEURAL NETWORKS, 2005, 18 (02) : 205 - 205
  • [2] Choosing v in Support Vector regression with different noise models -: Theory and experiments
    Chalimourda, A
    Schölkopf, B
    Smola, AJ
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL V, 2000, : 199 - 204
  • [3] Detection of Optimal Models in Parameter Space with Support Vector Machines
    Demyanov, Vasily
    Pozdnoukhov, Alexei
    Christie, Mike
    Kanevski, Mikhail
    [J]. GEOENV VII - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 2010, 16 : 345 - +
  • [4] Identification of state-dependent parameter models with support vector regression
    Toivonen, H. T.
    Totterman, S.
    Akesson, B.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (09) : 1454 - 1470
  • [5] The Relation of Solutions Between Different Models of Support Vector Regression
    Pan, Meiqin
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, SIMULATION AND MODELLING, 2016, 41 : 306 - 309
  • [6] Theoretically Optimal Parameter Choices for Support Vector Regression Machines with Noisy Input
    Wang Shitong
    Zhu Jiagang
    F. L. Chung
    Lin Qing
    Hu Dewen
    [J]. Soft Computing, 2005, 9 : 732 - 741
  • [7] Theoretically optimal parameter choices for support vector regression machines with noisy input
    Wang, ST
    Zhu, JG
    Chung, FL
    Lin, Q
    Hu, DW
    [J]. SOFT COMPUTING, 2005, 9 (10) : 732 - 741
  • [8] Estimation of the regularization parameter for support vector regression
    Jordaan, EM
    Smits, GF
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2192 - 2197
  • [9] Parameter Selection for Linear Support Vector Regression
    Hsia, Jui-Yang
    Lin, Chih-Jen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5639 - 5644
  • [10] Identification of Linear Parameter-Varying Models with Unknown Parameter Dependence Using ε-Support Vector Regression
    Datar, Adwait
    Schulz, Erik
    Werner, Herbert
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2011 - 2016