Design study of an antiproton trap for the GBAR experiment

被引:0
|
作者
Yoo, Kyoung-Hun [1 ]
Moon, Seok-Ho [1 ]
Chung, Moses [1 ]
Won, Dong Hwan [2 ]
Park, Kwan Hyung [2 ]
Lee, Byungchan [2 ]
Kim, Sun Kee [2 ]
Lim, Eunhoon [3 ]
Kim, Eun-San [3 ]
Kim, Bong Ho [4 ]
Werf, Dirk van der [5 ]
Kurodaf, Naofumi [6 ]
Perezg, Patrice [7 ]
机构
[1] Ulsan Natl Inst Sci & Theol, Dept Phys, Ulsan, South Korea
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[3] Korea Univ Sejong Campus, Dept Accelerator Sci, Sejong 30019, South Korea
[4] Inst for Basic Sci Korea, Ctr Underground Phys, Daejeon 34047, South Korea
[5] Swansea Univ, Phys Dept, Swansea SA2, Wales
[6] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan
[7] CEA Saclay, Inst Rech Sur lois Fondamentales Univers, F-91191 Gif Sur Yvette, France
基金
新加坡国家研究基金会;
关键词
Accelerator Applications; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Beam dynamics; Instrumentation for particle accelerators and storage rings-low energy (linear accelerators; cyclotrons; electrostatic accelerators); SIMULATION; PLASMA;
D O I
10.1088/1748-0221/17/10/T10003
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN has been proposed to measure the gravitational acceleration of the ultracold antihydrogen atoms. This experiment produces antihydrogen ions through interactions between antiprotons and positronium atoms. Then, antihydrogen atoms are produced for the free-fall experiment after the photo-detachment of an excess positron from the cold antihydrogen ions. The energy of the antiproton beam before the positronium target chamber will be in the range of 1-10 keV. The cross-section for the reaction between the antiprotons and positroniums depends mainly on the energy of the antiprotons. Hence, to maximize the productivity of antihydrogen ions, a sufficient number of antiprotons should be provided with well-controlled energy. In this regard, an antiproton trap is considered to accumulate and slow down antiproton beams, and cool them utilizing the electron cooling technique. This trap is designed based on the Penning-Malmberg trap, which consists of a superconducting solenoid magnet and a series of ring electrodes including high-voltage electrodes to trap antiprotons. In addition, a set of extraction electrodes and optics for beam transport are used. Each electrode has been designed and optimized using the WARP PIC simulations. In this study, the design and simulation results of each trap component are presented.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Particle detectors for the future antiproton Paul trap of the ASACUSA experiment at CERN
    Soter, A.
    Hori, M.
    [J]. HYPERFINE INTERACTIONS, 2009, 194 (1-3): : 201 - 205
  • [2] Particle detectors for the future antiproton Paul trap of the ASACUSA experiment at CERN
    A. Soter
    M. Hori
    [J]. Hyperfine Interactions, 2009, 194 : 201 - 205
  • [3] The GBAR antimatter gravity experiment
    Perez, P.
    Banerjee, D.
    Biraben, F.
    Brook-Roberge, D.
    Charlton, M.
    Clade, P.
    Comini, P.
    Crivelli, P.
    Dalkarov, O.
    Debu, P.
    Douillet, A.
    Dufour, G.
    Dupre, P.
    Eriksson, S.
    Froelich, P.
    Grandemange, P.
    Guellati, S.
    Guerout, R.
    Heinrich, J. M.
    Hervieux, P. -A.
    Hilico, L.
    Husson, A.
    Indelicato, P.
    Jonsell, S.
    Karr, J. -P.
    Khabarova, K.
    Kolachevsky, N.
    Kuroda, N.
    Lambrecht, A.
    Leite, A. M. M.
    Liszkay, L.
    Lunney, D.
    Madsen, N.
    Manfredi, G.
    Mansoulie, B.
    Matsuda, Y.
    Mohri, A.
    Mortensen, T.
    Nagashima, Y.
    Nesvizhevsky, V.
    Nez, F.
    Regenfus, C.
    Rey, J. -M.
    Reymond, J. -M.
    Reynaud, S.
    Rubbia, A.
    Sacquin, Y.
    Schmidt-Kaler, F.
    Sillitoe, N.
    Staszczak, M.
    [J]. HYPERFINE INTERACTIONS, 2015, 233 (1-3): : 21 - 27
  • [4] Status of the GBAR experiment at CERN
    Bruno Mansoulié
    [J]. Hyperfine Interactions, 2019, 240
  • [5] Positron accumulation in the GBAR experiment
    Blumer, P.
    Charlton, M.
    Chung, M.
    Clade, P.
    Comini, P.
    Crivelli, P.
    Dalkarov, O.
    Debu, P.
    Dodd, L.
    Douillet, A.
    Guellati, S.
    Hervieux, P-A
    Hilico, L.
    Husson, A.
    Indelicato, P.
    Janka, G.
    Jonsell, S.
    Karr, J-P
    Kim, B. H.
    Kim, E. S.
    Kim, S. K.
    Ko, Y.
    Kosinski, T.
    Kuroda, N.
    Latacz, B. M.
    Lee, B.
    Lee, H.
    Lee, J.
    Leite, A. M. M.
    Leveque, K.
    Lim, E.
    Liszkay, L.
    Lotrus, P.
    Lunney, D.
    Manfredi, G.
    Mansoulie, B.
    Matusiak, M.
    Mornacchi, G.
    Nesvizhevsky, V
    Nez, F.
    Niang, S.
    Nishi, R.
    Ohayon, B.
    Park, K.
    Paul, N.
    Perez, P.
    Procureur, S.
    Radics, B.
    Regenfus, C.
    Reymond, J-M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1040
  • [6] Status of the GBAR experiment at CERN
    Mansoulie, Bruno
    [J]. HYPERFINE INTERACTIONS, 2019, 240 (1):
  • [7] The GBAR antimatter gravity experiment
    P. Pérez
    D. Banerjee
    F. Biraben
    D. Brook-Roberge
    M. Charlton
    P. Cladé
    P. Comini
    P. Crivelli
    O. Dalkarov
    P. Debu
    A. Douillet
    G. Dufour
    P. Dupré
    S. Eriksson
    P. Froelich
    P. Grandemange
    S. Guellati
    R. Guérout
    J. M. Heinrich
    P.-A. Hervieux
    L. Hilico
    A. Husson
    P. Indelicato
    S. Jonsell
    J.-P. Karr
    K. Khabarova
    N. Kolachevsky
    N. Kuroda
    A. Lambrecht
    A. M. M. Leite
    L. Liszkay
    D. Lunney
    N. Madsen
    G. Manfredi
    B. Mansoulié
    Y. Matsuda
    A. Mohri
    T. Mortensen
    Y. Nagashima
    V. Nesvizhevsky
    F. Nez
    C. Regenfus
    J.-M. Rey
    J.-M. Reymond
    S. Reynaud
    A. Rubbia
    Y. Sacquin
    F. Schmidt-Kaler
    N. Sillitoe
    M. Staszczak
    [J]. Hyperfine Interactions, 2015, 233 : 21 - 27
  • [8] Positron accumulation in the GBAR experiment
    Blumer, P.
    Charlton, M.
    Chung, M.
    Clade, P.
    Comini, P.
    Crivelli, P.
    Dalkarov, O.
    Debu, P.
    Dodd, L.
    Douillet, A.
    Guellati, S.
    Hervieux, P-A
    Hilico, L.
    Husson, A.
    Indelicato, P.
    Janka, G.
    Jonsell, S.
    Karr, J-P
    Kim, B. H.
    Kim, E. S.
    Kim, S. K.
    Ko, Y.
    Kosinski, T.
    Kuroda, N.
    Latacz, B. M.
    Lee, B.
    Lee, H.
    Lee, J.
    Leite, A. M. M.
    Leveque, K.
    Lim, E.
    Liszkay, L.
    Lotrus, P.
    Lunney, D.
    Manfredi, G.
    Mansoulie, B.
    Matusiak, M.
    Mornacchi, G.
    Nesvizhevsky, V
    Nez, F.
    Niang, S.
    Nishi, R.
    Ohayon, B.
    Park, K.
    Paul, N.
    Perez, P.
    Procureur, S.
    Radics, B.
    Regenfus, C.
    Reymond, J-M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1040
  • [9] Design and preliminary testing of a high performance antiproton trap (HiPAT)
    Martin, J
    Lewis, R
    Kramer, K
    Meyer, K
    Smith, G
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-2001, 2001, 552 : 931 - 938
  • [10] Design and characterization of an antiproton deceleration beamline for the PUMA experiment
    Fischer, Jonas
    Schmidt, Alexander
    Azaryan, Nikolay
    Butin, Francois
    Somoza, Jose Ferreira
    Husson, Audric
    Klink, Clara
    Obertelli, Alexandre
    Schlaich, Moritz
    Sinturel, Alexandre
    Thaus, Nicolas
    Wienholtz, Frank
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2024, 550