Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise

被引:7
|
作者
Huang, Xing [1 ]
Wang, Feng-Yu [1 ,2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Swansea Univ, Dept Math, Bay Campus, Swansea SA1 8EN, W Glam, Wales
关键词
McKean-Vlasov SDEs; Wasserstein distance; Two-step fixed point argument; Weighted variation distance;
D O I
10.1016/j.jmaa.2022.126301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Zvonkin's transformation and a two-step fixed point argument in distributions, the well-posedness and regularity estimates are derived for singular McKean-Vlasov SDEs with distribution dependent noise, where the drift contains a term growing linearly in space and distribution and a locally integrable term independent of distribution, while the noise coefficient is weakly differentiable in space and Lipschitz continuous in distribution with respect to the sum of Wasserstein and weighted variation distances. The main results extend existing ones derived for noise coefficients either independent of distribution, or having nice linear functional derivatives in distribution. Singular reflecting SDEs with distribution dependent noise are also studied. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Exponential ergodicity for singular reflecting McKean-Vlasov SDEs
    Wang, Feng-Yu
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 160 : 265 - 293
  • [2] DERIVATIVE FORMULA FOR SINGULAR MCKEAN-VLASOV SDES
    Wang, Feng-yu
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (06) : 1866 - 1898
  • [3] WEAK EXISTENCE AND UNIQUENESS FOR MCKEAN-VLASOV SDES WITH COMMON NOISE
    Hammersley, William R. P.
    Siska, David
    Szpruch, Lukasz
    [J]. ANNALS OF PROBABILITY, 2021, 49 (02): : 527 - 555
  • [4] Exponential ergodicity for SDEs and McKean-Vlasov processes with Levy noise
    Liang, Mingjie
    Majka, Mateusz B.
    Wang, Jian
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1665 - 1701
  • [5] MCKEAN-VLASOV SDEs IN NONLINEAR FILTERING
    Pathiraja, Sahani
    Reich, Sebastian
    Stannat, Wilhelm
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (06) : 4188 - 4215
  • [6] Semiparametric estimation of McKean-Vlasov SDEs
    Belomestny, Denis
    Pilipauskaite, Vytaute
    Podolskij, Mark
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 79 - 96
  • [7] Smoothing properties of McKean-Vlasov SDEs
    Crisan, Dan
    McMurray, Eamon
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 97 - 148
  • [8] Importance sampling for McKean-Vlasov SDEs
    dos Reis, Goncalo
    Smith, Greig
    Tankov, Peter
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 453
  • [9] STRONG CONVERGENCE OF PROPAGATION OF CHAOS FOR MCKEAN-VLASOV SDES WITH SINGULAR INTERACTIONS
    Hao, Zimo
    Rockner, Michael
    Zhang, Xicheng
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 2661 - 2713
  • [10] McKean-Vlasov SDEs under measure dependent Lyapunov conditions
    Hammersley, William R. P.
    Siska, David
    Szpruch, Lukasz
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 1032 - 1057