Short Term Hourly Load Forecasting using combined artificial neural networks

被引:6
|
作者
Subbaraj, P. [1 ]
Rajasekaran, V. [2 ]
机构
[1] Kalasalingan Univ, Krishnankoil, Tamil Nadu, India
[2] PSNA Coll Engg &Tech, EEE, Dindigul, Tamil Nadu, India
关键词
D O I
10.1109/ICCIMA.2007.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach for Short Term Hourly Load Forecasting (STLF) using Combined Artificial Neural Network (CANN) module. The CANN module is developed for STLF using two different algorithms - Evolutionary Programming (EP) and Particle Swarm Optimization (PSO). In this paper, a set of neural networks has been trained with different architecture and training parameters. The Artificial Neural Networks (ANNs) are trained and tested for the actual load data of Chennai city (India). EP and PSO based Optimal Linear Combinations are applied to combine selected networks and to obtain CANN module, to produce better results, rather than using a single best trained ANN. The obtained test results indicate that the proposed approach improves the accuracy of the load forecasting.
引用
收藏
页码:155 / +
页数:2
相关论文
共 50 条
  • [1] Forecasting Turkey's Short Term Hourly Load with Artificial Neural Networks
    Bilgic, M.
    Girep, C. P.
    Aslanoglu, S. Y.
    Aydinalp-Koksal, M.
    [J]. 2010 IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION: SMART SOLUTIONS FOR A CHANGING WORLD, 2010,
  • [2] Short term load forecasting using Artificial Neural Networks
    Sinha, AK
    [J]. PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY 2000, VOLS 1 AND 2, 2000, : 548 - 553
  • [3] Forecasting of hourly electric load in Colombia using artificial neural networks
    Medina Hurtado, Santiago
    Moreno Cadavid, Julian
    Galego Valencia, Juan Pablo
    [J]. REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2011, (59): : 98 - 107
  • [4] An efficient approach for short term load forecasting using artificial neural networks
    Kandil, Nahi
    Wamkeue, Rene
    Saad, Maarouf
    Georges, Semaan
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (08) : 525 - 530
  • [5] Short Term Electrical Load Forecasting for Mauritius using Artificial Neural Networks
    Bugwan, Tina
    King, Robert T. F. Ah
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 3667 - 3672
  • [6] Enhanced Short-Term Load Forecasting Using Artificial Neural Networks
    Arvanitidis, Athanasios Ioannis
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Laitsos, Vasileios M.
    Tsoukalas, Lefteri H.
    [J]. ENERGIES, 2021, 14 (22)
  • [7] Very short-term load forecasting using artificial neural networks
    Charytoniuk, W
    Chen, MS
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 263 - 268
  • [8] Use of Artificial Neural Networks for Short Term Load Forecasting
    Ioannis, Arvanitidis Athanasios
    Dimitrios, Bargiotas
    [J]. 25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 18 - 22
  • [9] Evolving artificial neural networks for short term load forecasting
    Srinivasan, D
    [J]. NEUROCOMPUTING, 1998, 23 (1-3) : 265 - 276
  • [10] Short term electrical load forecasting with artificial neural networks
    Czernichow, T
    Piras, A
    Imhof, K
    Caire, P
    Jaccard, Y
    Dorizzi, B
    Germond, A
    [J]. ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 1996, 4 (02): : 85 - 99