Proton-Coupled Electron Flow in Protein Redox Machines

被引:248
|
作者
Dempsey, Jillian L. [1 ]
Winkler, Jay R. [1 ]
Gray, Harry B. [1 ]
机构
[1] CALTECH, Beckman Inst, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
COLI RIBONUCLEOTIDE REDUCTASE; SITE-DIRECTED MUTAGENESIS; TYROSINE Y-Z; PHOTOSYNTHETIC WATER OXIDATION; HYDROGEN-ATOM ABSTRACTION; CYTOCHROME-C-OXIDASE; AMINO-ACID-RESIDUES; OSMIUM AQUO COMPLEX; PHOTOSYSTEM-II; CONCERTED PROTON;
D O I
10.1021/cr100182b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanism of proton-coupled electron transfer (PCET) in protein redox reactions, namely, photosystem II and ribonucleotide reductase, is discussed. Many redox enzymes require the transfer of holes at high potentials where side chains of redox active amino acids, such as tyrosine and tryptophan, can become involved. Protein structures are designed to facilitate rapid and efficient charge transport along specific pathways and prevent off-path diffusion of redox equivalents, mutations, denaturants, and other disruptions of the redox pathway can hinder electron transfer. Coupling-limited electron transfer (ET) reactions in Ru-proteins occur by single-step electron tunneling over a wide distance range. The electrons could be transported 30 Å or more in hundreds of nanoseconds if an intervening redox center with a reduction potential well above that of the donor but not more than 200 mV above that of the acceptor is placed between donor and acceptor.
引用
收藏
页码:7024 / 7039
页数:16
相关论文
共 50 条
  • [1] Engineering a redox-active proton wire with proton-coupled electron transfer
    Goings, Joshua
    Odella, Emmanuel
    Wadsworth, Brian
    Mora, S. Jimena
    Mioy Huynh
    Gust, John
    Moore, Thomas
    Moore, Gary
    Hammes-Schiffer, Sharon
    Moore, Ana
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [2] Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment
    Reinhardt, Clorice R.
    Sequeira, Raquel
    Tommos, Cecilia
    Hammes-Schiffer, Sharon
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (01): : 128 - 136
  • [3] Proton-coupled electron transfer
    Robert, Marc
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) : 7695 - 7695
  • [4] Proton-coupled electron transfer
    Cukier, RI
    Nocera, DG
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 337 - 369
  • [5] Proton-Coupled Electron Transfer
    Weinberg, David R.
    Gagliardi, Christopher J.
    Hull, Jonathan F.
    Murphy, Christine Fecenko
    Kent, Caleb A.
    Westlake, Brittany C.
    Paul, Amit
    Ess, Daniel H.
    McCafferty, Dewey Granville
    Meyer, Thomas J.
    [J]. CHEMICAL REVIEWS, 2012, 112 (07) : 4016 - 4093
  • [6] Proton-Coupled Electron Transfer in Photosystem II: Proton Inventory of a Redox Active Tyrosine
    Jenson, David L.
    Barry, Bridgette A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (30) : 10567 - 10573
  • [7] Proton-coupled electron transfer
    Lebeau, E
    Meyer, TJ
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U96 - U96
  • [8] Proton-coupled electron transfer
    Huynh, My Hang V.
    Meyer, Thomas J.
    [J]. CHEMICAL REVIEWS, 2007, 107 (11) : 5004 - 5064
  • [9] Guanidines as Reagents in Proton-Coupled Electron-Transfer Reactions and Redox Catalysts
    Himmel, Hans-Joerg
    [J]. SYNLETT, 2018, 29 (15) : 1957 - 1977
  • [10] Role of Proton-Coupled Electron Transfer in the Redox Interconversion between Benzoquinone and Hydroquinone
    Song, Na
    Gagliardi, Christopher J.
    Binstead, Robert A.
    Zhang, Ming-Tian
    Thorp, Holden
    Meyer, Thomas J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (45) : 18538 - 18541