Novel numerical solution to the fractional neutron point kinetic equation in nuclear reactor dynamics

被引:8
|
作者
Polo-Labarrios, M. A. [1 ]
Quezada-Garcia, S. [2 ]
Espinosa-Paredes, G. [3 ]
Franco-Perez, L. [4 ]
Ortiz-Villafuerte, J. [5 ]
机构
[1] Univ Autonoma Metropolitana Cuajimalpa, Dept Ciencias Nat, Ave Vasco de Quiroga 4871, Mexico City 05370, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Dept Sistemas Energet, Ave Univ 3000,Ciudad Univ, Mexico City 04510, DF, Mexico
[3] Univ Autonoma Metropolitana Iztapalapa, Area Ingn Recursos Energet, Ave San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[4] Univ Autdnoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ave Vasco de Quiroga 4871, Mexico City 05370, DF, Mexico
[5] Inst Nacl Invest Nucl, Dept Sistemas Nucl, Carretera Mexico Toluca La Marquesa S-N, Ocoyoacac 52750, Estado De Mexic, Mexico
关键词
Reactor dynamics; Fractional neutron point kinetic equations; Anomalous diffusion coefficient; Sinusoidal reactivity; Multi term higher-order linear approximation; FINITE; MODEL; STABILITY;
D O I
10.1016/j.anucene.2019.107173
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this work, a novel numerical solution to modified Fractional Neutron Point Kinetic (FNPK) equations is presented. The method is based on a numerical solution to linear multi-term fractional differential equations taking from scientific literature. Differential-integral operators of fractional order are numerically solved with the novel method. The impact of the order of the operators has been assessed during the process of order reduction of the fractional differential-integral equation. The numerical solution is applied to case with sinusoidal reactivity, and different values of the anomalous diffusion order are used to study the effect on the neutron density. The results of the neutron density behavior obtained with this proposed numerical novel solution were compared against the classical neutron point kinetics equations and with other results from scientific literature. The comparison showed a clear improvement of the numerical results when using a fractional differential-integral operator instead of an only fractional differential operator. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical solution of fractional stochastic neutron point kinetic equation for nuclear reactor dynamics
    Ray, S. Saha
    Patra, A.
    ANNALS OF NUCLEAR ENERGY, 2013, 54 : 154 - 161
  • [2] Fractional neutron point kinetics equations for nuclear reactor dynamics - Numerical solution investigations
    Nowak, Tomasz Karol
    Duzinkiewicz, Kazimierz
    Piotrowski, Robert
    ANNALS OF NUCLEAR ENERGY, 2014, 73 : 317 - 329
  • [3] Numerical solution of fractional neutron point kinetics model in nuclear reactor
    Nowak, Tomasz Karol
    Duzinkiewicz, Kazimierz
    Piotrowski, Robert
    ARCHIVES OF CONTROL SCIENCES, 2014, 24 (02): : 129 - 154
  • [4] Application of the fractional neutron point kinetic equation: Start-up of a nuclear reactor
    Polo-Labarrios, M. -A.
    Espinosa-Paredes, G.
    ANNALS OF NUCLEAR ENERGY, 2012, 46 : 37 - 42
  • [5] Novel solution to the fractional neutron point kinetic equation using conformable derivatives
    Fernandez-Anaya, G.
    Quezada-Garcia, S.
    Polo-Labarrios, M. A.
    Quezada-Tellez, L. A.
    ANNALS OF NUCLEAR ENERGY, 2021, 160
  • [6] An Explicit Finite Difference scheme for numerical solution of fractional neutron point kinetic equation
    Ray, S. Saha
    Patra, A.
    ANNALS OF NUCLEAR ENERGY, 2012, 41 : 61 - 66
  • [7] The effect of pulse reactivity for stochastic neutron point kinetic equation in nuclear reactor dynamics
    Ray, S.S. (santanusaharay@yahoo.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (08):
  • [8] Fractional neutron point kinetics equations for nuclear reactor dynamics
    Espinosa-Paredes, Gilberto
    Polo-Labarrios, Marco-A.
    Espinosa-Martinez, Erick-G.
    del Valle-Gallegos, Edmundo
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 307 - 330
  • [9] Numerical analysis of startup PWR with fractional neutron point kinetic equation
    Polo-Labarrios, M-A
    Espinosa-Paredes, G.
    PROGRESS IN NUCLEAR ENERGY, 2012, 60 : 38 - 46
  • [10] Numerical approximation of a fractional neutron diffusion equation for neutron flux profile in a nuclear reactor
    Roul, Pradip
    Rohil, Vikas
    Espinosa-Paredes, Gilberto
    Obaidurrahman, K.
    PROGRESS IN NUCLEAR ENERGY, 2024, 170