Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes

被引:3
|
作者
Lutz, Christian [1 ]
Breuckmann, Michael [2 ]
Hampel, Sven [1 ]
Kreyenschmidt, Martin [2 ]
Ke, Xi [3 ]
Beuermann, Sabine [3 ]
Schafner, Katharina [4 ,5 ]
Turek, Thomas [4 ,5 ]
Kunz, Ulrich [4 ,5 ]
Buzanich, Ana Guilherme [6 ]
Radtke, Martin [6 ]
Fittschen, Ursula E. A. [1 ]
机构
[1] Tech Univ Clausthal, Inst Inorgan & Analyt Chem, Arnold Sommerfeld Str 4, D-38678 Clausthal Zellerfeld, Germany
[2] Univ Appl Sci Munster, Dept Chem Engn, Stegerwaldstr 39, D-48565 Steinfurt, Germany
[3] Tech Univ Clausthal, Inst Tech Chem, Arnold Sommerfeld Str 4, D-38678 Clausthal Zellerfeld, Germany
[4] Tech Univ Clausthal, Inst Chem & Electrochem Proc Engn, Leibnizstr 17, D-38678 Clausthal Zellerfeld, Germany
[5] Forschungszentrum Energiespeichertechnol, Stollen 19A, D-38640 Goslar, Germany
[6] BAM Fed Inst Mat Res & Testing, Richard Willstaetter Str 11, D-12489 Berlin, Germany
关键词
VRFB; PVDF-based membrane; UV; VIS; XANES; TXRF; ICP-OES; microXRF; CAPACITY LOSS; SULFURIC-ACID; ION DIFFUSION; WATER-UPTAKE; TRANSPORT; CHARGE; STATE; CROSSOVER; SPECTROSCOPY; V(IV)/V(V);
D O I
10.3390/membranes11080576
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A core component of energy storage systems like vanadium redox flow batteries (VRFB) is the polymer electrolyte membrane (PEM). In this work, the frequently used perfluorosulfonic-acid (PFSA) membrane Nafion (TM) 117 and a novel poly (vinylidene difluoride) (PVDF)-based membrane are investigated. A well-known problem in VRFBs is the vanadium permeation through the membrane. The consequence of this so-called vanadium crossover is a severe loss of capacity. For a better understanding of vanadium transport in membranes, the uptake of vanadium ions from electrolytes containing V-dimer(IV-V) and for comparison also V(II), V(III), V(IV), and V(V) by both membranes was studied. UV/VIS spectroscopy, X-ray absorption near edge structure spectroscopy (XANES), total reflection X-ray fluorescence spectroscopy (TXRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and micro X-ray fluorescence spectroscopy (microXRF) were used to determine the vanadium concentrations and the species inside the membrane. The results strongly support that V-dimer(IV-V), a dimer formed from V(IV) and V(V), enters the nanoscopic water-body of Nafion (TM) 117 as such. This is interesting, because as of now, only the individual ions V(IV) and V(V) were considered to be transported through the membrane. Additionally, it was found that the V-dimer(IV-V) dimer partly dissociates to the individual ions in the novel PVDF-based membrane. The V-dimer(IV-V) dimer concentration in Nafion (TM) was determined and compared to those of the other species. After three days of equilibration time, the concentration of the dimer is the lowest compared to the monomeric vanadium species. The concentration of vanadium in terms of the relative uptake lambda = n(V)/n(SO3) are as follows: V(II) [lambda = 0.155] > V(III) [lambda = 0.137] > V(IV) [lambda = 0.124] > V(V) [lambda = 0.053] > V-dimer(IV-V) [lambda = 0.039]. The results show that the V-dimer(IV-V) dimer needs to be considered in addition to the other monomeric species to properly describe the transport of vanadium through Nafion (TM) in VRFBs.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Ion Effects on Vanadium Transport in Nafion Membranes for Vanadium Redox Flow Batteries
    Lawton, Jamie S.
    Jones, Amanda M.
    Tang, Zhijiang
    Lindsey, Melanie
    Zawodzinski, Thomas
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (13) : A2987 - A2991
  • [2] Species Uptake and Mass Transport in Membranes for Vanadium Redox Flow Batteries
    Elgammal, Ramez A.
    Tang, Zhijiang
    Sun, Che-Nan
    Lawton, Jamie
    Zawodzinski, Thomas A., Jr.
    ELECTROCHIMICA ACTA, 2017, 237 : 1 - 11
  • [3] A review of vanadium electrolytes for vanadium redox flow batteries
    Choi, Chanyong
    Kim, Soohyun
    Kim, Riyul
    Choi, Yunsuk
    Kim, Soowhan
    Jung, Ho-Young
    Yang, Jung Hoon
    Kim, Hee-Tak
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 : 263 - 274
  • [4] A comparative study of Nafion series membranes for vanadium redox flow batteries
    Jiang, Bo
    Wu, Lantao
    Yu, Lihong
    Qiu, Xinping
    Xi, Jingyu
    JOURNAL OF MEMBRANE SCIENCE, 2016, 510 : 18 - 26
  • [5] Electrolytes for vanadium redox flow batteries
    Wu, Xiongwei
    Liu, Jun
    Xiang, Xiaojuan
    Zhang, Jie
    Hu, Junping
    Wu, Yuping
    PURE AND APPLIED CHEMISTRY, 2014, 86 (05) : 661 - 669
  • [6] Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries
    Lee, Yona
    Kim, Sangwon
    Hempelmann, Rolf
    Jang, Jong Hyun
    Kim, Hyoung-Juhn
    Han, Jonghee
    Kim, Jihyun
    Henkensmeier, Dirk
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (21)
  • [7] Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries
    Vijayakumar, M.
    Bhuvaneswari, M. S.
    Nachimuthu, P.
    Schwenzer, Birgit
    Kim, Soowhan
    Yang, Zhenguo
    Liu, Jun
    Graff, Gordon L.
    Thevuthasan, S.
    Hu, Jianzhi
    JOURNAL OF MEMBRANE SCIENCE, 2011, 366 (1-2) : 325 - 334
  • [8] Composite, Solvent-Casted Nafion Membranes for Vanadium Redox Flow Batteries
    Trogadas, Panagiotis
    Pinot, Emmanuel
    Fuller, Thomas F.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (01) : A5 - A8
  • [9] Polytetrafluoroethylene Modified Nafion Membranes by Magnetron Sputtering for Vanadium Redox Flow Batteries
    Su, Jun
    Ye, Jiaye
    Qin, Zhenyu
    Sun, Lidong
    COATINGS, 2022, 12 (03)
  • [10] Nafion-Based Proton Exchange Membranes for Vanadium Redox Flow Batteries
    He, Siqi
    Chai, Shengchao
    Li, Haolong
    CHEMSUSCHEM, 2025,