Maximal ergodic theorems for some group actions

被引:6
|
作者
Hu, Ying [1 ,2 ]
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
关键词
maximal ergodic inequalities; individual ergodic theorems; noncommutative L-p-spaces;
D O I
10.1016/j.jfa.2007.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove maximal ergodic inequalities for a sequence of operators and for their averages in the noncommutative L-p-space. We also obtain the corresponding individual ergodic theorems. Applying these results to actions of a free group on a von Neumann algebra, we get noncommutative analogues of maximal ergodic inequalities and pointwise ergodic theorems of Nevo-Stein. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1282 / 1306
页数:25
相关论文
共 50 条