Robust estimation via robust gradient estimation

被引:41
|
作者
Prasad, Adarsh [1 ]
Suggala, Arun Sai [1 ]
Balakrishnan, Sivaraman [1 ]
Ravikumar, Pradeep [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Heavy tails; Huber contamination; Outliers; Robust gradients; Robustness; HIGH DIMENSIONS;
D O I
10.1111/rssb.12364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a new computationally efficient class of estimators for risk minimization. We show that these estimators are robust for general statistical models, under varied robustness settings, including in the classical Huber epsilon-contamination model, and in heavy-tailed settings. Our workhorse is a novel robust variant of gradient descent, and we provide conditions under which our gradient descent variant provides accurate estimators in a general convex risk minimization problem. We provide specific consequences of our theory for linear regression and logistic regression and for canonical parameter estimation in an exponential family. These results provide some of the first computationally tractable and provably robust estimators for these canonical statistical models. Finally, we study the empirical performance of our proposed methods on synthetic and real data sets, and we find that our methods convincingly outperform a variety of baselines.
引用
收藏
页码:601 / 627
页数:27
相关论文
共 50 条
  • [1] Robust anisotropic diffusion filter via robust spatial gradient estimation
    Yong Chen
    [J]. Multidimensional Systems and Signal Processing, 2022, 33 : 501 - 525
  • [2] Robust anisotropic diffusion filter via robust spatial gradient estimation
    Chen, Yong
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2022, 33 (02) : 501 - 525
  • [3] Unbiased Gradient Estimation for Robust Optimization
    Ghosh S.
    Squillante M.S.
    [J]. Performance Evaluation Review, 2021, 49 (02): : 39 - 41
  • [4] High-dimensional Robust Mean Estimation via Gradient Descent
    Cheng, Yu
    Diakonikolas, Ilias
    Ge, Rong
    Soltanolkotabi, Mahdi
    [J]. 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [5] High-dimensional Robust Mean Estimation via Gradient Descent
    Cheng, Yu
    Diakonikolas, Ilias
    Ge, Rong
    Soltanolkotabi, Mahdi
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [6] Robust Distributed Sequential Detection via Robust Estimation
    Hou, Wenbin
    Leonard, Mark R.
    Zoubir, Abdelhak M.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2051 - 2055
  • [7] Robust Color Gradient Estimation for Photographic Volumes
    Zhang, Bin
    Tao, Yubo
    Lin, Hai
    [J]. E-LEARNING AND GAMES, 2016, 9654 : 392 - 402
  • [8] ROBUST ESTIMATION VIA STOCHASTIC APPROXIMATION
    MARTIN, RD
    MASRELIEZ, CJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (03) : 263 - 271
  • [9] A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
    Pu, Liming
    Zhang, Xiaoling
    Zhou, Zenan
    Li, Liang
    Zhou, Liming
    Shi, Jun
    Wei, Shunjun
    [J]. REMOTE SENSING, 2021, 13 (22)
  • [10] Computation of AVO intercept and gradient by robust estimation algorithm
    Geophysical Technique Research Center, BGP, Zhuozhou 072751, China
    [J]. Shiyou Diqiu Wuli Kantan, 2006, 3 (319-322):