Influence of External Pressure on the Performance of Quantum Dot Solar Cells

被引:3
|
作者
Kim, Jaehoon [1 ]
Jeong, Byeong Guk [2 ]
Roh, Heebum [1 ]
Song, Jiyun [1 ]
Park, Myeongjin [1 ]
Lee, Doh C. [2 ]
Bae, Wan Ki [3 ]
Lee, Changhee [1 ]
机构
[1] Seoul Natl Univ, Global Frontier Multiscale Energy Syst, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Korea Adv Inst Sci & Technol, KAIST Inst Nanocentury, Dept Chem & Biomol Engn, Program BK21, Daejeon 34141, South Korea
[3] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 02792, South Korea
关键词
solar cells; quantum dots; pressure; densification; compression; PHOTOVOLTAICS; NANOPARTICLES; STRATEGIES; EFFICIENCY; SOLIDS; ARRAYS;
D O I
10.1021/acsami.6b07771
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the influence of post-treatment via the external pressure on the device performance of quantum dot (QD) solar cells. The structural: analysis together with optical and electrical characterization on QD solids reveal that the external,pressure compacts QD active layers by removing the mesoscopic voids and enhances the charge carrier transport-along QD solids leading to significant increase in J(SC) of QD solar cells. Increasing the external pressure, by contrast, accompanies reduction in FE and V-OC, yielding the trade-off relationship among J(SC), and FF and V-OC in PCE of devices. Optimization at the external pressure in the present study at 1.4-1.6 MPa enables us to achieve over 10% increase in PCE of QD solar cells. The approach and results show that the control over the organization of QDs is the key for the-charge transport properties in ensemble and also offer simple yet effective; mean to enhance the electrical performance of transistors and solar cells using QDs.
引用
收藏
页码:23947 / 23952
页数:6
相关论文
共 50 条
  • [1] Influence of Multistep Surface Passivation on the Performance of PbS Colloidal Quantum Dot Solar Cells
    Clark, Pip C. J.
    Neo, Darren C. J.
    Ahumada-Lazo, Ruben
    Williamson, Andrew, I
    Pis, Igor
    Nappini, Silvia
    Watt, Andrew A. R.
    Flavell, Wendy R.
    [J]. LANGMUIR, 2018, 34 (30) : 8887 - 8897
  • [2] Influence of barrier layer's height on the performance of Si quantum dot solar cells
    Kitazawa, Kouhei
    Akaishi, Ryushiro
    Ono, Satoshi
    Takahashi, Isao
    Usami, Noritaka
    Kurokawa, Yasuyoshi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (08)
  • [3] Quantum dot solar cells
    Nozik, AJ
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2): : 115 - 120
  • [4] Quantum dot solar cells
    Aroutiounian, V
    Petrosyan, S
    Khachatryan, A
    Touryan, K
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) : 2268 - 2271
  • [5] Quantum dot solar cells
    Aroutiounian, VM
    Petrosyan, S
    Khachatryan, A
    Touryan, KJ
    [J]. SOLAR AND SWITCHING MATERIALS, 2001, 4458 : 38 - 45
  • [6] Quantum Dot Solar Cells
    Bedi, Guneet
    Singh, Rajendra
    [J]. 2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 225 - 229
  • [7] Quantum dot solar cells
    Raffaelle, RP
    Castro, SL
    Hepp, AF
    Bailey, SG
    [J]. PROGRESS IN PHOTOVOLTAICS, 2002, 10 (06): : 433 - 439
  • [8] Theoretical study of the photocurrent performance into quantum dot solar cells
    Nasr, A.
    [J]. OPTICS AND LASER TECHNOLOGY, 2013, 48 : 135 - 140
  • [9] A leap towards high performance quantum dot solar cells
    Liu, Shengzhong
    [J]. SCIENCE BULLETIN, 2020, 65 (10) : 783 - 785
  • [10] Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
    Boehm, Marcus L.
    Jellicoe, Tom C.
    Tabachnyk, Maxim
    Davis, Nathaniel J. L. K.
    Wisnivesky-Rocca-Rivarola, Florencia
    Ducati, Caterina
    Ehrler, Bruno
    Bakulin, Artem A.
    Greenham, Neil C.
    [J]. NANO LETTERS, 2015, 15 (12) : 7987 - 7993