Estimating Model Uncertainty of Neural Networks in Sparse Information Form

被引:0
|
作者
Lee, Jongseok [1 ]
Humt, Matthias [1 ]
Feng, Jianxiang [1 ,2 ]
Triebel, Rudolph [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, Wessling, Germany
[2] Tech Univ Munich TU Munich, Comp Vis Grp, Garching, Germany
关键词
SIMULTANEOUS LOCALIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the co-variance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Explicit MPC in the form of Sparse Neural Networks
    Kis, Karol
    Klauco, Martin
    Kvasnica, Michal
    PROCESS CONTROL '21 - PROCEEDING OF THE 2021 23RD INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2021, : 163 - 168
  • [2] SPARSE CODING AND INFORMATION IN HEBBIAN NEURAL NETWORKS
    PEREZVICENTE, CJ
    EUROPHYSICS LETTERS, 1989, 10 (07): : 621 - 625
  • [3] Estimating Information Flow in Deep Neural Networks
    Goldfeld, Ziv
    van den Berg, Ewout
    Greenewald, Kristjan
    Melnyk, Igor
    Nguyen, Nam
    Kingsbury, Brian
    Polyanskiy, Yury
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Robust Information Divergences for Model-Form Uncertainty Arising from Sparse Data in Random PDE
    Hall, Eric Joseph
    Katsoulakis, Markos A.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1364 - 1394
  • [5] Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference
    Hubin, Aliaksandr
    Storvik, Geir
    MATHEMATICS, 2024, 12 (06)
  • [6] Estimating uncertainty of streamflow simulation using Bayesian neural networks
    Zhang, Xuesong
    Liang, Faming
    Srinivasan, Raghavan
    Van Liew, Michael
    WATER RESOURCES RESEARCH, 2009, 45
  • [7] Adaptive sparse dropout: Learning the certainty and uncertainty in deep neural networks
    Chen, Yuanyuan
    Yi, Zhang
    NEUROCOMPUTING, 2021, 450 : 354 - 361
  • [8] Structured information in sparse-code metric neural networks
    Dominguez, David
    Gonzalez, Mario
    Rodriguez, Francisco B.
    Serrano, Eduardo
    Erichsen, R., Jr.
    Theumann, W. K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (03) : 799 - 808
  • [9] Estimating sparse networks with hubs
    McGillivray, Annaliza
    Khalili, Abbas
    Stephens, David A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179
  • [10] Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study
    Ng, Matthew
    Guo, Fumin
    Biswas, Labonny
    Petersen, Steffen E. E.
    Piechnik, Stefan K. K.
    Neubauer, Stefan
    Wright, Graham
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (06) : 1955 - 1966