The Menpo Facial Landmark Localisation Challenge: A step towards the solution

被引:68
|
作者
Zafeiriou, Stefanos [1 ,2 ]
Trigeorgis, George [1 ]
Chrysos, Grigorios [1 ]
Deng, Jiankang [1 ]
Shen, Jie [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] Univ Oulu, Dept Comp Sci & Engn, Oulu, Finland
基金
英国工程与自然科学研究理事会;
关键词
FACE ALIGNMENT;
D O I
10.1109/CVPRW.2017.263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new benchmark (Menpo benchmark) for facial landmark localisation and summarise the results of the recent competition, so-called Menpo Challenge, run in conjunction to CVPR 2017. The Menpo benchmark, contrary to the previous benchmarks such as 300-W and 300-VW, contains facial images both in (nearly) frontal, as well as in profile pose (annotated with a different markup of facial landmarks). Furthermore, we increase considerably the number of annotated images so that deep learning algorithms can be robustly applied to the problem. The results of the Menpo challenge demonstrate that recent deep learning architectures when trained with the abundance of data lead to excellent results. Finally, we discuss directions for future benchmarks in the topic.
引用
收藏
页码:2116 / 2125
页数:10
相关论文
共 50 条
  • [1] The 3D Menpo Facial Landmark Tracking Challenge
    Zafeiriou, Stefanos
    Chrysos, Grigorios G.
    Roussos, Anastasios
    Ververas, Evangelos
    Deng, Jiankang
    Trigeorgis, George
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2503 - 2511
  • [2] The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking
    Deng, Jiankang
    Roussos, Anastasios
    Chrysos, Grigorios
    Ververas, Evangelos
    Kotsia, Irene
    Shen, Jie
    Zafeiriou, Stefanos
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (6-7) : 599 - 624
  • [3] The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking
    Jiankang Deng
    Anastasios Roussos
    Grigorios Chrysos
    Evangelos Ververas
    Irene Kotsia
    Jie Shen
    Stefanos Zafeiriou
    International Journal of Computer Vision, 2019, 127 : 599 - 624
  • [4] Continuous Supervised Descent Method for Facial Landmark Localisation
    Oliu, Marc
    Corneanu, Ciprian
    Jeni, Laszlo A.
    Cohn, Jeffrey F.
    Kanade, Takeo
    Escalera, Sergio
    COMPUTER VISION - ACCV 2016, PT II, 2017, 10112 : 121 - 135
  • [5] Stacked Hourglass Network for Robust Facial Landmark Localisation
    Yang, Jing
    Liu, Qingshan
    Zhang, Kaihua
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 2025 - 2033
  • [6] Landmark-in-facial-component: Towards occlusion-robust facial landmark localization
    Li, Xiaoqiang
    Wu, Kaiyuan
    Zhang, Shaohua
    IMAGE AND VISION COMPUTING, 2024, 151
  • [7] Stacked Multi-Target Network for Robust Facial Landmark Localisation
    Yang, Yun
    Yu, Bing
    Li, Xiaodong
    Feng, Bailan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 188 - 197
  • [8] Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks
    Feng, Zhen-Hua
    Kittler, Josef
    Awais, Muhammad
    Huber, Patrik
    Wu, Xiao-Jun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2235 - 2245
  • [9] Application of geometry to RGB images for facial landmark localisation - a preliminary approach
    Vezzetti, Enrico
    Marcolin, Federica
    Tornincasa, Stefano
    Maroso, Pietro
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2016, 8 (3-4) : 216 - 236
  • [10] 3D Facial Landmark Localisation by Matching Simple Descriptors
    Romero-Huertas, Marcelo
    Pears, Nick
    2008 IEEE SECOND INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2008, : 346 - 351