Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel

被引:254
|
作者
Lan, Liangyun [1 ]
Qiu, Chunlin [1 ]
Zhao, Dewen [1 ]
Gao, Xiuhua [1 ]
Du, Linxiu [1 ]
机构
[1] Northeastern Univ, State Key Lab Rolling Technol & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Coarse grained heat affected zone; Low carbon bainitic steel; Martensite-austenite constituent; High misorientation grain boundary; Toughness; LOW-ALLOY STEEL; CLEAVAGE FRACTURE; ACICULAR FERRITE; MICROALLOYED STEELS; MARTENSITE; AUSTENITE; BEHAVIOR; DIFFRACTION; INITIATION; NIOBIUM;
D O I
10.1016/j.msea.2011.09.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The correlation of microstructural characteristics and toughness of the simulated coarse grained heat affected zone (CGHAZ) of low carbon bainitic steel was investigated in this study. The toughness of simulated specimens was examined by using an instrumented Charpy impact tester after the simulation welding test was conducted with different cooling times. Microstructure observation and crystallographic feature analysis were conducted by means of optical microscope and scanning electron microscope equipped with electron back scattered diffraction (EBSD) system, respectively. The main microstructure of simulated specimen changes from lath martensite to coarse bainite with the increase in cooling time. The deterioration of its toughness occurs when the cooling time ranges from 10 to 50s compared with base metal toughness, and the toughness becomes even worse when the cooling time increases to 90 s or more. The MA (martensite-austenite) constituent is primary responsible for the low toughness of simulated CGHAZ with high values of cooling time because the large MA constituent reduces the crack initiation energy significantly. For crack propagation energy, the small effective grain size of lath martensite plays an important role in improving the crack propagation energy. By contrast, high misorientation packet boundary in coarse bainite seems to have few contributions to the improvement of the toughness because cleavage fracture micromechanism of coarse bainite is mainly controlled by crack initiation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 200
页数:9
相关论文
共 50 条
  • [1] On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel
    Xiaohui Xi
    Jinliang Wang
    Liqing Chen
    Zhaodong Wang
    Journal of Materials Science, 2020, 55 : 10863 - 10877
  • [2] On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel
    Xi, Xiaohui
    Wang, Jinliang
    Chan, Liqing
    Wang, Zhaodong
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (24) : 10863 - 10877
  • [3] The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel
    Wang, Jinliang
    Wang, Shuai
    Xi, Xiaohui
    Wang, Gui
    Chen, Liqing
    MATERIALS CHARACTERIZATION, 2021, 181 (181)
  • [4] Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones
    Cui, Junjun
    Zhu, Wenting
    Chen, Zhenye
    Chen, Liqing
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (12): : 6258 - 6268
  • [5] Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones
    Junjun Cui
    Wenting Zhu
    Zhenye Chen
    Liqing Chen
    Metallurgical and Materials Transactions A, 2020, 51 : 6258 - 6268
  • [6] MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB-REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL
    Lan Liangyun
    Qiu Chunlin
    Zhao Dewen
    Li Canming
    Gao Xiuhua
    Du Linxiu
    ACTA METALLURGICA SINICA, 2011, 47 (08) : 1046 - 1054
  • [7] Effect of magnesium addition in low carbon steel part 2: toughness and microstructure of the simulated coarse-grained heat-affected zone
    Li, Xiaobing
    Zhang, Tongsheng
    Min, Yi
    Liu, Chengjun
    Jiang, Maofa
    IRONMAKING & STEELMAKING, 2019, 46 (03) : 301 - 311
  • [8] Microstructural evolution and hydrogen embrittlement in simulated reheated coarse-grained heat-affected zone of a high-strength naval steel
    Hai, Chao
    Du, Cuiwei
    Li, Xiaogang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 1034 - 1047
  • [9] Crystallographic study on microstructure and impact toughness of coarse grained heat affected zone of ultra-high strength steel
    Wang, X. L.
    Xie, Z. J.
    Wang, Z. Q.
    Yu, Y. S.
    Wu, L. Q.
    Shang, C. J.
    MATERIALS LETTERS, 2022, 323
  • [10] High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel
    Hu, Jun
    Du, Lin-Xiu
    Wang, Jian-Jun
    Xie, Hui
    Gao, Cai-Ru
    Misra, R. D. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 : 323 - 328