First-principles calculations of magnetic circular dichroism spectra

被引:85
|
作者
Ganyushin, Dmitry [1 ]
Neese, Frank [1 ]
机构
[1] Univ Bonn, Lehrstuhl Theoret Chem, D-53115 Bonn, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2008年 / 128卷 / 11期
关键词
D O I
10.1063/1.2894297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An elaborate approach for the prediction of magnetic circular dichroism (MCD) spectra in the framework of highly correlated multiconfigurational ab initio methods is presented. The MCD transitions are computed by the explicit treatment of spin-orbit coupled (SOC) and spin-spin coupled (SSC) N-electron states. These states are obtained from the diagonalization of the SOC and SSC operators along with the spin and orbital Zeeman operators in the basis of a preselected number of roots of the spin-free Hamiltonian. Therefore, zero-field splittings due to the SOC and SSC interactions along with the magnetic field splittings are explicitly accounted for in the ground as well as the excited states. This makes it possible to calculate simultaneously all MCD A, B, and C terms even beyond the linear response limit. The SOC is computed using a multicenter mean-field approximation to the Breit-Pauli Hamiltonian. Two-electron SSC terms are included in the treatment without further approximations. The MCD transition intensities are subjected to numerical orientational averaging in order to treat the most commonly encountered case of randomly oriented molecules. The simulated MCD spectra for the OH, NH, and CH radicals as well as for [Fe(CN)(6)](3-) are in good agreement with the experimental spectra. In the former case, the significant effects of the inert gas matrices in which the experimental spectra were obtained were modeled in a phenomenological way. (c) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] First-principles calculation of magnetic circular dichroism spectra of magnetic semiconductors
    Ogura, M.
    Akai, H.
    PHYSICAL REVIEW B, 2010, 82 (18)
  • [2] X-ray magnetic circular dichroism in GdN: First-principles calculations
    Antonov, V. N.
    Harmon, B. N.
    Yaresko, A. N.
    Shpak, A. P.
    PHYSICAL REVIEW B, 2007, 75 (18):
  • [3] First-principles calculations of protein circular dichroism in the near ultraviolet
    Rogers, DM
    Hirst, JD
    BIOCHEMISTRY, 2004, 43 (34) : 11092 - 11102
  • [4] Electronic circular dichroism of proteins from first-principles calculations
    Hirst, JD
    Colella, K
    Gilbert, ATB
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (42): : 11813 - 11819
  • [5] Magnetic circular dichroism spectra in a II-VI diluted magnetic semiconductor Zn1-xCrxTe:: First-principles calculations
    Weng, Hongming
    Dong, Jinming
    Fukumura, Tomoteru
    Kawasaki, Masashi
    Kawazoe, Yoshiyuki
    PHYSICAL REVIEW B, 2006, 74 (11)
  • [6] X-ray magnetic circular dichroism in UGe2: first-principles calculations
    Antonov, V. N.
    Harmon, B. N.
    Yaresko, A. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (18)
  • [7] X-ray magnetic circular dichroism in CeFe2:: First-principles calculations
    Antonov, V. N.
    Kukusta, D. A.
    Yaresko, A. N.
    PHYSICAL REVIEW B, 2008, 78 (09):
  • [8] Spin spirals and X-ray magnetic circular dichroism in IrMnAl: First-principles calculations
    Antonov, VN
    Harmon, BN
    Yaresko, AN
    Bekenov, LV
    Shpak, AP
    PHYSICAL REVIEW B, 2006, 73 (09)
  • [9] X-ray magnetic circular dichroism in Co2FeGa: First-principles calculations
    Kukusta, D. A.
    Antonov, V. N.
    Yaresko, A. N.
    LOW TEMPERATURE PHYSICS, 2011, 37 (08) : 684 - 689
  • [10] First-principles calculations of protein circular dichroism in the far-ultraviolet and beyond
    Oakley, MT
    Bulheller, BM
    Hirst, JD
    CHIRALITY, 2006, 18 (05) : 340 - 347