APPLYING A GLIOMA-TRAINED DEEP LEARNING AUTO-SEGMENTATION TOOL ON BM PRE- AND POST-RADIOSURGERY

被引:0
|
作者
Kaur, Manpreet [1 ]
Varghese, Sunitha [1 ]
Jekel, Leon [1 ]
Tillmanns, Niklas [1 ]
Merkaj, Sara [1 ]
Bousabarah, Khaled [2 ]
Lin, MingDe [1 ]
Bhawnani, Jitendra [1 ]
Chiang, Veronica [3 ]
Aboian, Mariam [1 ]
机构
[1] Yale Sch Med, New Haven, CT USA
[2] Visage Imaging GmbH, Berlin, Germany
[3] Yale Sch Med, Dept Neurosurg, New Haven, CT USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
NIMG-07
引用
收藏
页码:162 / 163
页数:2
相关论文
共 18 条
  • [1] Validation of Deep-Learning Based Auto-segmentation of the Lens, Optic Nerves, and Chiasm for Stereotactic Radiosurgery
    Salari, K.
    Porter, E.
    Levitin, R.
    Siddiqui, Z. A.
    Thompson, A.
    Deraniyagala, R. L., Jr.
    Guerrero, T. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E784 - E785
  • [2] Evaluation of a Deep Learning-Based Auto-Segmentation Tool for Online Adaptive Radiation Therapy
    Amjad, A.
    Thill, D.
    Lawton, C. A. F.
    O'Connell, N.
    Hall, W. A.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E785 - E786
  • [3] Evaluation of an Externally Trained Deep-Learning Based GTV Auto-Segmentation Model for Head and Neck Cancer
    Rwigema, J. C.
    Bilaal, A.
    Tegtmeier, R. C.
    Holmes, J.
    Qian, J.
    McGee, L. A.
    Patel, S. H.
    Rong, Y.
    Chen, Q.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E109 - E109
  • [4] EVALUATING THE PERFORMANCE OF A DEEP LEARNING GLIOMA SEGMENTATION MODEL USING COMBINED PRE- AND POST-TREATMENT MRI TRAINING DATA
    Ranjbar, Sara
    Singleton, Kyle
    Curtin, Lee
    Paulson, Lisa
    Clark-swanson, Kamala
    Hawkins-daarud, Andrea
    Mitchell, J. Ross
    Jackson, Pamela
    Swanson, Kristin
    NEURO-ONCOLOGY, 2023, 25
  • [5] Development and Practical Implementation of a Deep Learning?Based Pipeline for Automated Pre- and Postoperative Glioma Segmentation
    Lotan, E.
    Zhang, B.
    Dogra, S.
    Wang, W. D.
    Carbone, D.
    Fatterpekar, G.
    Oermann, E. K.
    Lui, Y. W.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2022, 43 (01) : 24 - 32
  • [6] Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging
    Papi, Zahra
    Fathi, Sina
    Dalvand, Fatemeh
    Vali, Mahsa
    Yousefi, Ali
    Tabatabaei, Mohammad Hemmatyar
    Amouheidari, Alireza
    Abedi, Iraj
    NEUROINFORMATICS, 2023, 21 (04) : 641 - 650
  • [7] Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging
    Zahra Papi
    Sina Fathi
    Fatemeh Dalvand
    Mahsa Vali
    Ali Yousefi
    Mohammad Hemmatyar Tabatabaei
    Alireza Amouheidari
    Iraj Abedi
    Neuroinformatics, 2023, 21 : 641 - 650
  • [8] Validation of an established deep learning auto-segmentation tool for cardiac substructures in 4D radiotherapy planning scans
    Walls, Gerard M.
    Giacometti, Valentina
    Apte, Aditya
    Thor, Maria
    McCann, Conor
    Hanna, Gerard G.
    'Connor, John
    Deasy, Joseph O.
    Hounsell, Alan R.
    Butterworth, Karl T.
    Cole, Aidan J.
    Jain, Suneil
    McGarry, Conor K.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 23 : 118 - 126
  • [9] Feasibility of Using a Deep Learning Auto-Segmentation Software Trained with Planning CT for Iterative CBCT Based Online Adaptive Prostate Treatment
    Duan, J.
    Bernard, M. E.
    Latorre, J.
    Feng, X.
    Chen, Q.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E582 - E582
  • [10] Feasibility Study of a Deep Learning-Based Model Trained On Adults for Auto-Segmentation of Head-And-Neck OARs in Pediatric CT Images
    Shen, Z.
    Olch, A.
    Bai, N.
    Wong, K.
    Chang, E.
    Yang, W.
    MEDICAL PHYSICS, 2022, 49 (06) : E840 - E841