Computing maximum non-crossing matching in convex bipartite graphs

被引:3
|
作者
Chen, Danny Z. [1 ]
Liu, Xiaomin [1 ]
Wang, Haitao [2 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
Maximum non-crossing matching; Maximum matching; Convex bipartite graphs; Algorithms; Data structures; LINEAR-TIME ALGORITHM; IMPLEMENTATION;
D O I
10.1016/j.dam.2015.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider computing a maximum non-crossing matching in convex bipartite graphs. For a convex bipartite graph of n vertices and m edges, we present an O(n log n) time algorithm for finding a maximum non-crossing matching in the graph. The previous best algorithm takes O(m + n log n) time (Malucelli et al., 1993). Since m = circle dot(n(2)) in the worst case, our result improves the previous work. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [1] Enumeration of bipartite non-crossing geometric graphs?
    Cheon, Gi-Sang
    Choi, Hong Joon
    Esteban, Guillermo
    Song, Minho
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 317 : 86 - 100
  • [2] DNA Computing of Bipartite Graphs for Maximum Matching
    Shiying Wang
    [J]. Journal of Mathematical Chemistry, 2002, 31 : 271 - 279
  • [3] DNA computing of bipartite graphs for maximum matching
    Wang, SY
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 31 (03) : 271 - 279
  • [4] BSP/CGM algorithm for maximum matching in convex bipartite graphs
    Soares, J
    Stefanes, M
    [J]. 15TH SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, PROCEEDINGS, 2003, : 167 - 174
  • [5] CIRCULAR CONVEX BIPARTITE GRAPHS - MAXIMUM MATCHING AND HAMILTONIAN CIRCUITS
    LIANG, YD
    BLUM, N
    [J]. INFORMATION PROCESSING LETTERS, 1995, 56 (04) : 215 - 219
  • [6] Coarse grained parallel maximum matching in convex bipartite graphs
    Bose, P
    Chan, A
    Dehne, F
    Latzel, M
    [J]. IPPS/SPDP 1999: 13TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM & 10TH SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1999, : 125 - 129
  • [7] Lower bounds on the maximum number of non-crossing acyclic graphs
    Huemer, Clemens
    de Mier, Anna
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 48 - 62
  • [8] Computing Maximum Matching in Parallel on Bipartite Graphs: Worth the Effort?
    Azad, Ariful
    Halappanavar, Mahantesh
    Dobrian, Florin
    Pothen, Alex
    [J]. PROCEEDINGS OF THE FIRST WORKSHOP ON IRREGULAR APPLICATIONS: ARCHITECTURES AND ALGORITHM (IAAA'11), 2011, : 11 - 14
  • [9] Non-crossing convex quantile regression
    Dai, Sheng
    Kuosmanen, Timo
    Zhou, Xun
    [J]. ECONOMICS LETTERS, 2023, 233
  • [10] Bottleneck Non-crossing Matching in the Plane
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    Trabelsi, Yohai
    [J]. ALGORITHMS - ESA 2012, 2012, 7501 : 36 - 47