Unsplit variables perfectly matched layers for the shallow water equations with Coriolis forces

被引:7
|
作者
Abarbanel, S
Stanescu, D
Hussaini, MY
机构
[1] Tel Aviv Univ, Dept Math, Inst Adv Studies, IL-69978 Tel Aviv, Israel
[2] Florida State Univ, Sch Computat Sci & Informat Technol, Tallahassee, FL 32306 USA
关键词
nonreflecting boundary conditions; perfectly matched layers; shallow water equations;
D O I
10.1023/B:COMG.0000005245.72694.13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper presents an analytical and numerical study of two perfectly matched layer (PML) formulations for the shallow water equations in terms of the unsplit physical variables. A perturbation method followed by a change of dependent variable allows us to extend the methods to include the Coriolis forces. The PML equations, usually given in terms of the primitive variables, are also presented here in terms of the conservative variables, which facilitates their use in flows containing discontinuities. The performance of the two methods on a set of test cases is investigated.
引用
收藏
页码:275 / 294
页数:20
相关论文
共 50 条
  • [1] Unsplit Variables Perfectly Matched Layers for the Shallow Water Equations with Coriolis Forces
    S. Abarbanel
    D. Stanescu
    M.Y. Hussaini
    Computational Geosciences, 2003, 7 : 275 - 294
  • [2] A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables
    Hu, FQ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (02) : 455 - 480
  • [3] On the long-time behavior of unsplit perfectly matched layers
    Bécache, E
    Petropoulos, PG
    Gedney, SD
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (05) : 1335 - 1342
  • [4] Well-balanced schemes for the shallow water equations with Coriolis forces
    Chertock, Alina
    Dudzinski, Michael
    Kurganov, Alexander
    Lukacova-Medvid'ova, Maria
    NUMERISCHE MATHEMATIK, 2018, 138 (04) : 939 - 973
  • [5] Well-balanced schemes for the shallow water equations with Coriolis forces
    Alina Chertock
    Michael Dudzinski
    Alexander Kurganov
    Mária Lukáčová-Medvid’ová
    Numerische Mathematik, 2018, 138 : 939 - 973
  • [6] A perfectly matched layer approach to the linearized shallow water equations models
    Navon, IM
    Neta, B
    Hussaini, MY
    MONTHLY WEATHER REVIEW, 2004, 132 (06) : 1369 - 1378
  • [8] Stable Perfectly Matched Layers for the Schrodinger Equations
    Duru, Kenneth
    Kreiss, Gunilla
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 287 - 295
  • [9] Perfectly matched absorbing layers for the paraxial equations
    Collino, F
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) : 164 - 180
  • [10] An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces
    Liu, Xin
    Chertock, Alina
    Kurganov, Alexander
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 391 : 259 - 279