Probabilistic Peak Load Estimation in Smart Cities Using Smart Meter Data

被引:41
|
作者
Sun, Mingyang [1 ]
Wang, Yi [2 ]
Strbac, Goran [1 ]
Kang, Chongqing [2 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
基金
国家重点研发计划; 英国工程与自然科学研究理事会;
关键词
Coincident peak demand; distribution network planning; probabilistic estimation; R-vine copulas; smart meter; DEMAND;
D O I
10.1109/TIE.2018.2803732
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adequate capacity planning of substations and feeders primarily depends on an accurate estimation of the future peak electricity demand. Traditional coincident peak demand estimation is carried out based on the empirical metric, after diversity maximum demand, indicating individual peak consumption levels and demand diversification across multiple residents. With the privilege of smart meters in smart cities, this paper proposes a data-driven probabilistic peak demand estimation framework using fine-grained smart meter data and sociodemographic data of the consumers, which drive fundamental electricity consumptions across different categories. In particular, four main stages are integrated in the proposed approach: load modeling and sampling via the proposed variable truncated R-vine copulas method, correlation-based customer grouping, probabilistic normalized maximum diversified demand estimation, and probabilistic peak demand estimation for new customers. Numerical experiments have been conducted on real demand measurements across 2639 households in London, collected from Low Carbon London project's smart-metering trial. The mean absolute percentage error and the pinball loss function are used to quantitatively demonstrate the superiority of the proposed approach in terms of the point estimate value and the probabilistic result, respectively.
引用
收藏
页码:1608 / 1618
页数:11
相关论文
共 50 条
  • [1] Transformer Load Estimation Using Smart Meter Data in Taipower
    Su, Chun-Lien
    Ching, Hai-Ming
    Pu, Yu-Chi
    Kuo, Chao-Lin
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT (GTSD), 2016, : 34 - 38
  • [2] Distribution Transformer kVA Load Estimation Using Smart Meter Data
    Usman, Hafiz M.
    ElShatshat, Ramadan
    El-Hag, Ayman H.
    [J]. 2021 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2021, : 149 - 153
  • [3] Estimation of distribution transformer kVA load using residential smart meter data
    Usman, Hafiz M.
    ElShatshat, Ramadan
    El-Hag, Ayman H.
    Jabr, Rabih A.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 204
  • [4] A Novel Smart Method for State Estimation in a Smart Grid Using Smart Meter Data
    Souhe, Felix Ghislain Yem
    Boum, Alexandre Teplaira
    Ele, Pierre
    Mbey, Camille Franklin
    Kakeu, Vinny Junior Foba
    [J]. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [5] Processing of Smart Meters Data for Peak Load Estimation of Consumers
    Grigoras, Gheorghe
    Scarlatache, Florina
    [J]. 2015 9TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2015, : 864 - 867
  • [6] Probabilistic Aggregated Load Forecasting with Fine-grained Smart Meter Data
    Wang, Yi
    Von Krannichfeldt, Leandro
    Hug, Gabriela
    [J]. 2021 IEEE MADRID POWERTECH, 2021,
  • [7] A novel approach for load profiling in smart power grids using smart meter data
    Khan, Zafar A.
    Jayaweera, Dilan
    Alvarez-Alvarado, Manuel S.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2018, 165 : 191 - 198
  • [8] Improving the Quality of Load Forecasts Using Smart Meter Data
    Shahzadeh, Abbas
    Khosravi, Abbas
    Nahavandi, Saeid
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 667 - 674
  • [9] Short Term Load Forecasting using Smart Meter Data
    Ali, Sarwan
    Mansoor, Haris
    Arshad, Naveed
    Khan, Imdadullah
    [J]. E-ENERGY'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2019, : 419 - 421
  • [10] Load Forecasting Benchmark for Smart Meter Data
    Viana, Joao
    Bessa, Ricardo J.
    Sousa, Joao
    [J]. 2019 IEEE MILAN POWERTECH, 2019,