A chaotic Hopf bifurcation in coupled maps

被引:2
|
作者
Aston, PJ [1 ]
机构
[1] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
来源
PHYSICA D | 1998年 / 118卷 / 3-4期
关键词
chaos; synchronisation; coupled maps; symmetry; bifurcation;
D O I
10.1016/S0167-2789(98)00016-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three-dimensional maps with a one-dimensional invariant subspace are considered in which the dynamics in the invariant subspace is chaotic. Such maps arise from three coupled one-dimensional maps. If the coupling is uni-directional and identical, then the system has a Z(3) symmetry and this forces the two normal Lyapunov exponents to coincide. It is then possible to define a linearised average rotation about the invariant subspace, When the normal Lyapunov exponents change sign, a chaotic Hopf bifurcation occurs. By considering similar coupled systems but with different coupling strengths, the Z(3) symmetry is lost but there is still an SO(2) symmetry on the normal linearisation and so similar results for the Lyapunov exponents hold. If there is no symmetry on the linearisation either, then the multiple Lyapunov exponents split, although it is still possible to define a linearised average rotation in many cases. These three different scenarios are illustrated with numerical examples. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:199 / 220
页数:22
相关论文
共 50 条
  • [1] Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators
    Zhan, M
    Wei, GW
    Lai, CH
    Lai, YC
    Liu, ZH
    PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036201
  • [2] Hopf Bifurcation in a Chaotic Associative Memory
    Tiba, Andre K. O.
    Araujo, Aluizio F. R.
    Rabelo, Marcos N.
    NEUROCOMPUTING, 2015, 152 : 109 - 120
  • [3] ON HOPF BIFURCATION OF LIU CHAOTIC SYSTEM
    Yassen, M. T.
    El-Dessoky, M. M.
    Saleh, E.
    Aly, E. S.
    DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 111 - 122
  • [4] Bifurcation in coupled Hopf oscillators
    Sterpu, Mihaela
    Rocsoreanu, Carmen
    MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 835 : 133 - +
  • [5] HOPF BIFURCATION FOR MAPS AT A POINT OF RESONANCE
    LEMAIREBODY, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 727 - 730
  • [6] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [7] Control strategies for Hopf bifurcation in a chaotic associative memory
    Tiba, Andre K. O.
    Araujo, Aluizio F. R.
    NEUROCOMPUTING, 2019, 323 : 157 - 174
  • [8] Dynamics and Hopf Bifurcation of a Chaotic Chemical Reaction Model
    Din, Qamar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (02) : 351 - 369
  • [9] Hopf bifurcation in the Lorenz-type chaotic system
    Yan, Zhenya
    CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1135 - 1142
  • [10] Stochastic Hopf Bifurcation of a novel finance chaotic system
    Zhang, Jiangang
    Nan, Juan
    Chu, Yandong
    Du, Wenju
    An, Xinlei
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2727 - 2739