Predicting aspect-based sentiment using deep learning and information visualization: The impact of COVID-19 on the airline industry

被引:33
|
作者
Chang, Yung-Chun [2 ]
Ku, Chih-Hao [1 ]
Duy-Duc Le Nguyen [2 ]
机构
[1] Cleveland State Univ, Monte Ahuja Coll Business, Cleveland, OH 44115 USA
[2] Taipei Med Univ Hosp, Clin Big Data Res Ctr, Taipei, Taiwan
关键词
Aspect-based Sentiment Analysis; Social Media Analysis; Natural Language Processing; Deep Learning; Information Visualization; Bidirectional Encoder Representations from; Transformers; SERVICE QUALITY; CUSTOMER SATISFACTION; ASPECT EXTRACTION; SOCIAL MEDIA; PASSENGER; OPINION; LOYALTY; PERCEPTIONS; REVIEWS; YOUTUBE;
D O I
10.1016/j.im.2021.103587
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates customer satisfaction through aspect-level sentiment analysis and visual analytics. We collected and examined the flight reviews on TripAdvisor from January 2016 to August 2020 to gauge the impact of COVID-19 on passenger travel sentiment in several aspects. Till now, information systems, management, and tourism research have paid little attention to the use of deep learning and word embedding techniques, such as bidirectional encoder representations from transformers, especially for aspect-level sentiment analysis. This paper aims to identify perceived aspect-based sentiments and predict unrated sentiments for various categories to address this research gap. Ultimately, this study complements existing sentiment analysis methods and extends the use of data-driven and visual analytics approaches to better understand customer satisfaction in the airline industry and within the context of the COVID-19. Our proposed method outperforms baseline comparisons and therefore contributes to the theoretical and managerial literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Aspect-Based Financial Sentiment Analysis using Deep Learning
    Jangid, Hitkul
    Singhal, Shivangi
    Shah, Rajiv Ratn
    Zimmermann, Roger
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1961 - 1966
  • [2] Deep learning for aspect-based sentiment analysis: a review
    Zhu L.
    Xu M.
    Bao Y.
    Xu Y.
    Kong X.
    PeerJ Computer Science, 2022, 8
  • [3] Ensemble Deep Learning for Aspect-based Sentiment Analysis
    Mohammadi, Azadeh
    Shaverizade, Anis
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 29 - 38
  • [4] A Deep Learning Approach to Aspect-Based Sentiment Prediction
    Alexandridis, Georgios
    Michalakis, Konstantinos
    Aliprantis, John
    Polydoras, Pavlos
    Tsantilas, Panagiotis
    Caridakis, George
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 397 - 408
  • [5] Deep learning for aspect-based sentiment analysis: a review
    Zhu, Linan
    Xu, Minhao
    Bao, Yinwei
    Xu, Yifei
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [6] Enhancing Arabic aspect-based sentiment analysis using deep learning models
    Al-Dabet, Saja
    Tedmori, Sara
    AL-Smadi, Mohammad
    COMPUTER SPEECH AND LANGUAGE, 2021, 69
  • [7] A stance dataset with aspect-based sentiment information from Indonesian COVID-19 vaccination-related tweets
    Purwitasari, Diana
    Putra, Cornelius Bagus Purnama
    Raharjo, Agus Budi
    DATA IN BRIEF, 2023, 47
  • [8] Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods
    Liu, Haoyue
    Chatterjee, Ishani
    Zhou, MengChu
    Lu, Xiaoyu Sean
    Abusorrah, Abdullah
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (06): : 1358 - 1375
  • [9] Aspect-Based Sentiment Analysis of Vietnamese Texts with Deep Learning
    Long Mai
    Bac Le
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 149 - 158
  • [10] Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review
    Do, Hai Ha
    Prasad, P. W. C.
    Maag, Angelika
    Alsadoon, Abeer
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 118 : 272 - 299