Quantum cascade lasers based on quantum dot superlattice

被引:24
|
作者
Dmitriev, IA
Suris, RA
机构
[1] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
D O I
10.1002/pssa.200460714
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The possibility of an optical amplification by a quantum well (QW) superlattice subject to a strong DC electric field was predicted more than 30 years ago [1]. This idea stimulated a 15-year research effort at Bell Labs which culminated in 1994 with the invention of a quantum cascade (QC) laser [2]. Now, the QC lasers greatly overperform mid-IR diode lasers and are used in a growing number of industrial and scientific applications [3]. The performance of a QW QC laser is, however, fundamentally limited mainly due to a wide QW subband spectrum, corresponding to a free electronic in-plane motion (motion in the perpendicular direction is quantized by QW potential and DC field). The wide spectrum gives rise to a fast non-radiative decay due to phonon emission whose rate is three orders of magnitude larger than the radiative one. Thus, the population inversion needed for a laser operation can be achieved at a high threshold current of a few kA/cm(2) only [2]. The continuous in-plane spectrum of QWs also results in a strong free-carrier absorption and corresponding losses due to current excited by the in-plane electric field component of a laser mode. Here we exploit two alternative schemes of a cascade laser based on a quantum dot (QD) superlattice (first proposed in Ref. [4]). The purely discrete spectrum of QDs allows for a significant reduction of the non-radiative decay rate, threshold current, and optical losses.
引用
收藏
页码:987 / 991
页数:5
相关论文
共 50 条
  • [1] Superlattice quantum cascade lasers
    Tredicucci, A
    Capasso, F
    Gmachl, C
    Sivco, DL
    Hutchinson, AL
    Chu, SNG
    Cho, AY
    [J]. IN-PLANE SEMICONDUCTOR LASERS III, 1999, 3628 : 95 - 103
  • [2] Electronic distribution in superlattice quantum cascade lasers
    Troccoli, M
    Scamarcio, G
    Spagnolo, V
    Tredicucci, A
    Gmachl, C
    Capasso, F
    Sivco, DL
    Cho, AY
    Striccoli, M
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (08) : 1088 - 1090
  • [3] Superlattice material of quantum cascade lasers was optimized based on growth temperature
    Han, Yao-Zhang
    Zhang, Dong-Liang
    Zhang, Cheng-Cheng
    Zhu, Lian-Qing
    [J]. OPTICAL MATERIALS EXPRESS, 2023, 13 (12): : 3502 - 3509
  • [4] High-performance superlattice quantum cascade lasers
    Capasso, F
    Tredicucci, A
    Gmachl, C
    Sivco, DL
    Hutchinson, AL
    Cho, AY
    Scamarcio, G
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) : 792 - 807
  • [5] High-performance superlattice quantum cascade lasers
    Capasso, Federico
    Tredicucci, Alessandro
    Gmachl, Claire
    Sivco, Deborah L.
    Hutchinson, Albert L.
    Cho, Alfred Y.
    Scamarcio, Gaetano
    [J]. IEEE Journal on Selected Topics in Quantum Electronics, 5 (03): : 792 - 807
  • [6] Effective-mass superlattice as an injector in quantum cascade lasers
    Mykhailo V. Klymenko
    Ivan M. Safonov
    Oleksiy V. Shulika
    Igor A. Sukhoivanov
    Rainer Michalzik
    [J]. Optical and Quantum Electronics, 2008, 40 : 197 - 204
  • [7] GaAs/AlGaAs superlattice quantum cascade lasers at λ≈13 μm
    Strasser, G
    Gianordoli, S
    Hvozdara, L
    Schrenk, W
    Unterrainer, K
    Gornik, E
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (10) : 1345 - 1347
  • [8] Superlattice quantum-cascade lasers get more power
    不详
    [J]. LASER FOCUS WORLD, 2001, 37 (05): : 11 - 11
  • [9] Design strategy for terahertz quantum dot cascade lasers
    Burnett, Benjamin A.
    Williams, Benjamin S.
    [J]. OPTICS EXPRESS, 2016, 24 (22): : 25471 - 25481
  • [10] Long wavelength superlattice quantum cascade lasers at λ≃17 μm
    Tredicucci, A
    Gmachl, C
    Capasso, F
    Sivco, DL
    Hutchinson, AL
    Cho, AY
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (05) : 638 - 640