Model Identification using Continuous Glucose Monitoring Data for Type 1 Diabetes

被引:19
|
作者
Boiroux, Dimitri [1 ,2 ]
Hagdrup, Morten [1 ]
Mahmoudi, Zeinab [1 ,2 ]
Poulsen, Niels Kjolstad [1 ]
Madsen, Henrik [1 ]
Jorgensen, John Bagterp [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Odense Univ Hosp, Danish Diabet Acad, DK-5000 Odense C, Denmark
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 07期
关键词
Type; 1; diabetes; parameter identification; continuous glucose monitoring; least squares; Huber regression; maximum likelihood; PREDICTIVE CONTROL; INSULIN;
D O I
10.1016/j.ifacol.2016.07.279
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses model identification of continuous-discrete nonlinear models for people with type 1 diabetes using sampled data from a continuous glucose monitor (CGM). compare five identification techniques: least squares, weighted least squares, Huber regression, maximum likelihood with extended Kalman filter and maximum likelihood with unscented Kalman filter. We perform the identification on a 24-hour simulation of a stochastic differential equation (SDE) version of the Medtronic Virtual Patient (MVP) model including process and output noise. We compare the fits with Hie actual CCM signal, as well as the short- and long-term predictions for each identified model. The numerical results show that the maximum likelihood-based identification techniques offer the best performance in terms of fitting and prediction. Moreover, they have other advantages compared to ODE-based modeling, such as parameter tracking, population modeling, and handling of outliers. (C) 2016, IFAC (International Federation of Automatic Control) hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:759 / 764
页数:6
相关论文
共 50 条
  • [1] Continuous glucose monitoring in type 1 diabetes
    Nelly Mauras
    Larry Fox
    Kimberly Englert
    Roy W. Beck
    [J]. Endocrine, 2013, 43 : 41 - 50
  • [2] Continuous glucose monitoring in type 1 diabetes
    Weinzimer S.A.
    Tamborlane W.V.
    Chase P.
    Garg S.K.
    [J]. Current Diabetes Reports, 2004, 4 (2) : 95 - 100
  • [3] Continuous glucose monitoring in type 1 diabetes
    Mauras, Nelly
    Fox, Larry
    Englert, Kimberly
    Beck, Roy W.
    [J]. ENDOCRINE, 2013, 43 (01) : 41 - 50
  • [4] Identification of blood glucose patterns in patients with type 1 diabetes using continuous glucose monitoring and clustering techniques
    Contador Pachon, Sergio
    Botella Serrano, Marta
    Garnica Alcazar, Oscar
    Velasco Cabo, Jose Manuel
    Aramendi Zurimendi, Aranzanzu
    Rodriguez Martinez, Remedios
    Maqueda Villaizan, Esther
    Hidalgo Perez, Jose Ignacio
    [J]. ENDOCRINOLOGIA DIABETES Y NUTRICION, 2021, 68 (03): : 170 - 174
  • [5] Continuous Glucose Monitoring in Youth with Type 1 Diabetes
    Wadwa, R. Paul
    Fiallo-Scharer, Rosanna
    VanderWel, Brandon
    Messer, Laurel H.
    Cobry, Erin
    Chase, H. Peter
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2009, 11 : S83 - S91
  • [6] Continuous Glucose Monitoring and Type 1 Diabetes Reply
    Tamborlane, William V.
    Beck, Roy W.
    Laffel, Lori
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (02): : 191 - 192
  • [7] Continuous glucose monitoring in type 1 diabetes mellitus
    Pavlicek, Vojtech
    [J]. DIABETOLOGE, 2019, 15 (08): : 744 - 746
  • [8] Continuous glucose monitoring in type 1 diabetes mellitus
    Tamborlane, William V.
    Beck, Roy W.
    [J]. LANCET, 2009, 373 (9677): : 1744 - 1746
  • [9] Continuous glucose monitoring in children with type 1 diabetes
    不详
    [J]. JOURNAL OF PEDIATRICS, 2007, 151 (04): : 388 - 393
  • [10] Jointly Predicting Postprandial Hypoglycemia and Hyperglycemia Using Continuous Glucose Monitoring Data in Type 1 Diabetes
    Cui, Ran
    Nolan, Christopher J.
    Daskalaki, Elena
    Suominen, Hanna
    [J]. 2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,