UTILIZING SPATIO-TEMPORAL DATA IN MULTI-AGENT SIMULATION

被引:3
|
作者
Glake, Daniel [1 ]
Ritter, Norbert [1 ]
Clemen, Thomas [2 ]
机构
[1] Univ Hamburg, Dept Informat, Vogt Kolln Str 30, D-22527 Hamburg, Germany
[2] Hamburg Univ Appl Sci, Dept Comp Sci, Berliner Tor 7, D-20099 Hamburg, Germany
关键词
MODEL;
D O I
10.1109/WSC48552.2020.9384124
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spatio-temporal properties strongly influence a large proportion of multi-agent simulations (MAS) in their application domains. Time-dependent simulations benefit from correct and time-sensitive input data that match the current simulated time or offer the possibility to take into account previous simulation states in their modelling perspective. In this paper, we present the concepts and semantics of data-driven simulations with vector and raster data and extend them by a time dimension that applies at run-time within the simulation execution or in conjunction with the definition of MAS models. We show that the semantics consider the evolution of spatio-temporal objects with their temporal relationships between spatial entities.
引用
收藏
页码:242 / 253
页数:12
相关论文
共 50 条
  • [1] Multi-Agent Simulation of Epidemic Spatio-temporal Transmission
    Liu, Tao
    Li, Xia
    Ai, Bin
    Fu, Jing
    Zhang, XiaoHu
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 7, PROCEEDINGS, 2008, : 357 - +
  • [2] Multi-Agent Trajectory Prediction With Spatio-Temporal Sequence Fusion
    Wang, Yu
    Chen, Shiwei
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 13 - 23
  • [3] Spatio-Temporal Domain Awareness for Multi-Agent Collaborative Perception
    Yang, Kun
    Yang, Dingkang
    Zhang, Jingyu
    Li, Mingcheng
    Liu, Yang
    Liu, Jing
    Wang, Hanqi
    Sun, Peng
    Song, Liang
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 23326 - 23335
  • [4] Hierarchical Coordination Multi-Agent Reinforcement Learning With Spatio-Temporal Abstraction
    Ma, Tinghuai
    Peng, Kexing
    Rong, Huan
    Qian, Yurong
    Al-Nabhan, Najla
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 533 - 547
  • [5] Balancing Spectral Clustering for Segmenting Spatio-Temporal Observations of Multi-Agent Systems
    Takacs, Balint
    Demiris, Yiannis
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 580 - 587
  • [6] A spatio-temporal logic for 2D multi-agent problem domains
    Gagne, D
    Pang, WL
    Trudel, A
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 1997, 12 (01) : 141 - 145
  • [7] Spatio-temporal Analysis of Multi-agent Scheduling Behaviors on Fixed-track Networks
    Agarwal, Shivam
    Wallner, Guenter
    Watson, Jeremy
    Beck, Fabian
    [J]. 2022 IEEE 15TH PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2022), 2022, : 21 - 30
  • [8] Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction and Tracking
    Li, Jiachen
    Ma, Hengbo
    Zhang, Zhihao
    Li, Jinning
    Tomizuka, Masayoshi
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 10556 - 10569
  • [9] MAST: a hybrid Multi-Agent Spatio-Temporal model of tumor microenvironment informed using a data-driven approach
    Cesaro, Giulia
    Milia, Mikele
    Baruzzo, Giacomo
    Finco, Giovanni
    Morandini, Francesco
    Lazzarini, Alessio
    Alotto, Piergiorgio
    da Cunha Carvalho de Miranda, Noel Filipe
    Trajanoski, Zlatko
    Finotello, Francesca
    Di Camillo, Barbara
    [J]. BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [10] Utilizing Multi-Agent Simulation to Explore Cities
    Feng, Ma Jin
    Feng, Mao
    Sheng, Zhou Wen
    [J]. WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 841 - 845