Cooper pairing in non-Fermi liquids

被引:215
|
作者
Metlitski, Max A. [1 ]
Mross, David F. [2 ]
Sachdev, Subir [3 ,4 ]
Senthil, T. [5 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
QUANTUM MONTE-CARLO; SPIN-LIQUID; ELECTRONIC NEMATICITY; RENORMALIZATION-GROUP; COMPOSITE FERMIONS; GAUGE-THEORY; STATE; PHASE; HALL; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.91.115111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
States of matter with a sharp Fermi surface but no well-defined Landau quasiparticles arise in a number of physical systems. Examples include (i) quantum critical points associated with the onset of order in metals; (ii) spinon Fermi-surface [U(1) spin-liquid] state of a Mott insulator; (iii) Halperin-Lee-Read composite fermion charge liquid state of a half-filled Landau level. In this work, we use renormalization group techniques to investigate possible instabilities of such non-Fermi liquids in two spatial dimensions to Cooper pairing. We consider the Ising-nematic quantum critical point as an example of an ordering phase transition in a metal, and demonstrate that the attractive interaction mediated by the order-parameter fluctuations always leads to a superconducting instability. Moreover, in the regime where our calculation is controlled, superconductivity preempts the destruction of electronic quasiparticles. On the other hand, the spinon Fermi surface and the Halperin-Lee-Read states are stable against Cooper pairing for a sufficiently weak attractive short-range interaction; however, once the strength of attraction exceeds a critical value, pairing sets in. We describe the ensuing quantum phase transition between (i) U(1) and Z(2) spin-liquid states; (ii) Halperin-Lee-Read and Moore-Read states.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The unreasonable effectiveness of Eliashberg theory for pairing of non-Fermi liquids
    Chowdhury, Debanjan
    Berg, Erez
    [J]. ANNALS OF PHYSICS, 2020, 417
  • [2] Non-Fermi liquids
    Schofield, AJ
    [J]. CONTEMPORARY PHYSICS, 1999, 40 (02) : 95 - 115
  • [3] Anisotropic non-Fermi liquids
    Sur, Shouvik
    Lee, Sung-Sik
    [J]. PHYSICAL REVIEW B, 2016, 94 (19)
  • [4] Singular or non-Fermi liquids
    Varma, CM
    Nussinov, Z
    van Saarloos, W
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 361 (5-6): : 267 - 417
  • [5] Chiral non-Fermi liquids
    Sur, Shouvik
    Lee, Sung-Sik
    [J]. PHYSICAL REVIEW B, 2014, 90 (04)
  • [6] Fermi liquids and non-Fermi liquids - The view from photoemission
    Allen, JW
    Gweon, GH
    Claessen, R
    Matho, K
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1995, 56 (12) : 1849 - 1853
  • [7] Finite temperature non-Fermi liquids
    M. Gulacsi
    G. Bowen
    A. Rosengren
    [J]. Journal of Low Temperature Physics, 1999, 117 : 313 - 316
  • [8] Non-fermi liquids in quantum wires
    Kramer, B
    Sassetti, M
    [J]. MOLECULAR LOW DIMENSIONAL AND NANOSTRUCTURED MATERIALS FOR ADVANCED APPLICATIONS, 2002, 59 : 81 - 94
  • [9] Non-Fermi liquids from holography
    Liu, Hong
    McGreevy, John
    Vegh, David
    [J]. PHYSICAL REVIEW D, 2011, 83 (06):
  • [10] Non-Fermi liquids in oxide heterostructures
    Stemmer, Susanne
    Allen, S. James
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (06)