A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk

被引:0
|
作者
He, Wenqian [1 ]
Qian, Dong [2 ]
Wang, Yang [2 ]
Zhang, Guanghao [1 ]
Cheng, Yao [3 ]
Hu, Xiaoyu [1 ]
Wen, Kai [1 ]
Wang, Meilin [4 ]
Liu, Zunfeng [1 ]
Zhou, Xiang [1 ,4 ]
Zhu, Meifang [5 ]
机构
[1] Nankai Univ, Coll Chem, Key Lab Funct Polymer Mat, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[2] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[3] Inner Mongolia Univ Technol, Chem Engn Coll, Hohhot 010051, Peoples R China
[4] China Pharmaceut Univ, Dept Sci, Nanjing 211198, Peoples R China
[5] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
biomimetic materials; carbon nanotubes; cross-linking; fibers; functional fibers; nanomaterials; polymer composites; self-assembly; spinning; FIBERS; TOUGHNESS; ROBUST; HYDROGEL; STRENGTH;
D O I
10.1002/adma.202201843
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spider dragline silk is draw-spun from soluble, beta-sheet-crosslinked spidroin in aqueous solution. This spider silk has an excellent combination of strength and toughness, which originates from the hierarchical structure containing beta-sheet crosslinking points, spiral nanoassemblies, a rigid sheath, and a soft core. Inspired by the spidroin structure and spider spinning process, a soluble and crosslinked nanogel is prepared and crosslinked fibers are drew spun with spider-silk-like hierarchical structures containing cross-links, aligned nanoassemblies, and sheath-core structures. Introducing nucleation seeds in the nanogel solution, and applying prestretch and a spiral architecture in the nanogel fiber, further tunes the alignment and assembly of the polymer chains, and enhances the breaking strength (1.27 GPa) and toughness (383 MJ m(-3)) to approach those of the best dragline silk. Theoretical modeling provides understanding for the dependence of the fiber's spinning capacity on the nanogel size. This work provides a new strategy for the direct spinning of tough fiber materials.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Artificial spinning of spider silk
    Seidel, A
    Liivak, O
    Jelinski, LW
    [J]. MACROMOLECULES, 1998, 31 (19) : 6733 - 6736
  • [2] Toward spinning artificial spider silk
    Rising, Anna
    Johansson, Jan
    [J]. NATURE CHEMICAL BIOLOGY, 2015, 11 (05) : 309 - 315
  • [3] Spider silk: Spinning an artificial yarn
    Alison Stoddart
    [J]. Nature Reviews Materials, 2
  • [4] Toward spinning artificial spider silk
    Rising A.
    Johansson J.
    [J]. Nature Chemical Biology, 2015, 11 (5) : 309 - 315
  • [5] Heat shock protein-like activity of a nanogel artificial chaperone for citrate synthase
    Sawada, Shin-Ichi
    Nomura, Yuta
    Aoyama, Yasuhiro
    Akiyoshi, Kazunari
    [J]. JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2006, 21 (06) : 487 - 501
  • [6] A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning
    Teule, Florence
    Cooper, Alyssa R.
    Furin, William A.
    Bittencourt, Daniela
    Rech, Elibio L.
    Brooks, Amanda
    Lewis, Randolph V.
    [J]. NATURE PROTOCOLS, 2009, 4 (03) : 341 - 355
  • [7] A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning
    Florence Teulé
    Alyssa R Cooper
    William A Furin
    Daniela Bittencourt
    Elibio L Rech
    Amanda Brooks
    Randolph V Lewis
    [J]. Nature Protocols, 2009, 4 : 341 - 355
  • [8] Biomimetic spinning of artificial spider silk from a chimeric minispidroin
    Andersson, Marlene
    Jia, Qiupin
    Abella, Ana
    Lee, Xiau-Yeen
    Landreh, Michael
    Purhonen, Pasi
    Hebert, Hans
    Tenje, Maria
    Robinson, Carol V.
    Meng, Qing
    Plaza, Gustavo R.
    Johansson, Jan
    Rising, Anna
    [J]. NATURE CHEMICAL BIOLOGY, 2017, 13 (03) : 262 - +
  • [9] Bio Focus: Spinning artificial spider silk remains a challenge
    Laurel Hamers
    [J]. MRS Bulletin, 2015, 40 : 102 - 103
  • [10] Biomimetic spinning of artificial spider silk from a chimeric minispidroin
    Andersson M.
    Jia Q.
    Abella A.
    Lee X.-Y.
    Landreh M.
    Purhonen P.
    Hebert H.
    Tenje M.
    Robinson C.V.
    Meng Q.
    Plaza G.R.
    Johansson J.
    Rising A.
    [J]. Nature Chemical Biology, 2017, 13 (3) : 262 - 264