Optimal control of a rigid body using geometrically exact computations on SE(3)

被引:0
|
作者
Lee, Taeyoung [1 ,2 ]
McClamroch, N. Harris [1 ]
Leok, Melvin [2 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal control problems are formulated and efficient computational procedures are proposed for combined orbital and rotational maneuvers of a rigid body in three dimensions. The rigid body is assumed to act under the influence of forces and moments that arise from a potential and from control forces and moments. The key features of this paper are its use of computational procedures that are guaranteed to preserve the geometry of the optimal solutions. The theoretical basis for the computational procedures is summarized, and examples of optimal spacecraft maneuvers are presented.
引用
收藏
页码:2712 / +
页数:2
相关论文
共 50 条
  • [1] Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3)
    T. Lee
    M. Leok
    N. H. McClamroch
    [J]. Journal of Dynamical and Control Systems, 2008, 14 : 465 - 487
  • [2] OPTIMAL ATTITUDE CONTROL OF A RIGID BODY USING GEOMETRICALLY EXACT COMPUTATIONS ON SO(3)
    Lee, T.
    Leok, M.
    McClamroch, N. H.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2008, 14 (04) : 465 - 487
  • [3] Optimal Energy Trajectory Generation for a Quadrotor UAV Using Geometrically Exact Computations on SE(3)
    Nikhilraj, A.
    Simha, H.
    Priyadarshan, H.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 216 - 221
  • [4] Optimal attitude control of a rigid body
    Spindler, K
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1996, 34 (01): : 79 - 90
  • [5] Optimal control of rotation of a rigid body
    Zelikin, MI
    [J]. DOKLADY AKADEMII NAUK, 1996, 346 (03) : 334 - 336
  • [6] Efficient Exact Collision-Checking of 3-D Rigid Body Motions using Linear Transformations and Distance Computations in Workspace
    He, Liang
    van den Berg, Jur
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 2059 - 2064
  • [7] Optimal control of the rotational motion of a rigid body using moving masses
    El-Gohary, AI
    Tawfik, TS
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (02) : 453 - 465
  • [8] STABILITY OF COUPLED RIGID BODY AND GEOMETRICALLY EXACT RODS - BLOCK DIAGONALIZATION AND THE ENERGY MOMENTUM METHOD
    SIMO, JC
    POSBERGH, TA
    MARSDEN, JE
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 193 (06): : 279 - 360
  • [9] Discrete rigid body dynamics and optimal control
    Bloch, AM
    Crouch, PE
    Marsden, JE
    Ratiu, TS
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2249 - 2254
  • [10] Time optimal attitude control for a rigid body
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 5210 - +