METRIC n-LIE ALGEBRAS

被引:4
|
作者
Jin, Yidong [2 ]
Liu, Wenli [1 ]
Zhang, Zhixue [1 ]
机构
[1] Hebei Univ, Coll Math & Comp, Baoding 071002, Hebei, Peoples R China
[2] N China Elect Power Univ, Sch Math & Phys, Baoding, Hebei, Peoples R China
关键词
Invariant scalar product; n-Lie algebra; Metric n-Lie algebra; BILINEAR-FORMS; TRIPLE-SYSTEMS;
D O I
10.1080/00927871003596198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-Lie algebra is said to be metric if it is endowed with an invariant, non-degenerate, symmetric bilinear form. We prove that any simple n-Lie algebra over an algebraically closed field of characteristic zero admits a unique metric structure and vice versa. Further, we present two metric n-Lie algebras, which are indecomposable but admit many more metric structures.
引用
收藏
页码:572 / 583
页数:12
相关论文
共 50 条
  • [1] Some Results on Metric n-Lie Algebras
    Rui Pu BAI
    Wan Qing WU
    Zhen Heng LI
    Acta Mathematica Sinica,English Series, 2012, (06) : 1209 - 1220
  • [2] Some Results on Metric n-Lie Algebras
    Rui Pu BAI
    Wan Qing WU
    Zhen Heng LI
    Acta Mathematica Sinica, 2012, 28 (06) : 1209 - 1220
  • [3] Some results on metric n-Lie algebras
    Rui Pu Bai
    Wan Qing Wu
    Zhen Heng Li
    Acta Mathematica Sinica, English Series, 2012, 28 : 1209 - 1220
  • [4] The decomposition of metric n-Lie algebras and the uniqueness
    Chen, Zhiqi
    Liang, Ke
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [5] Classification of (n + 2)-Dimensional Metric n-Lie Algebras
    Mingming Ren
    Zhiqi Chen
    Ke Liang
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 243 - 249
  • [6] Stability of n-Lie homomorphisms and Jordan n-Lie homomorphisms on n-Lie algebras
    Kim, Seong Sik
    Rassias, John Michael
    Cho, Yeol Je
    Kim, Soo Hawn
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
  • [7] Approximate n-Lie Homomorphisms and Jordan n-Lie Homomorphisms on n-Lie Algebras
    Gordji, M. Eshaghi
    Kim, G. H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [8] Classifications of (n plus k)-dimensional metric n-Lie algebras
    Bai, Ruipu
    Wu, Wanqing
    Chen, Zhiqi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (14)
  • [9] Real simple n-Lie algebras admitting metric structures
    Jin, Yidong
    Liu, Wenli
    Zhang, Zhixue
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [10] CLASSIFICATION OF (n+2)-DIMENSIONAL METRIC n-LIE ALGEBRAS
    Ren, Mingming
    Chen, Zhiqi
    Liang, Ke
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (02) : 243 - 249