Stationary Wavelet Transform for Automatic Epileptic Seizure Detection

被引:1
|
作者
Shiferaw, Gebremichael [1 ]
Mamuye, Adane [2 ]
Piangerelli, Marco [3 ]
机构
[1] Univ Gondar, Dept Informat Syst, Gondar, Ethiopia
[2] Univ Gondar, Dept Comp Sci, Gondar, Ethiopia
[3] Univ Camerino, Dept Comp Sci, Camerino, Italy
关键词
EEG signal; Discrete wavelet transforms; Stationary wavelet transforms; Seizure detection; SVM Classifiers; Wavelet functions;
D O I
10.1007/978-3-030-26630-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual detection of epileptic seizure from EEG signal is being inefficient and time consuming. Computational EEG signal analysis techniques were then used in the diagnosis and management of epileptic seizures. In this study, we compared the performance of Discrete Wavelet Transform (DWT) and the Stationary Wavelet Transform (SWT) decomposition techniques with 22 wavelet functions (Coiflets (coif), Daubechies (DB) and Symlets (Sym) families) using support vector machine classifier. We used multichannel EEG dataset of the University of Bon Epilepsy Center. From this dataset, five statistical wavelet features: max, min, average, mean of absolute and standard deviation were extracted. In all of the wavelet functions except three, in the Coiflets family, the experimental result showed that SWT achieved better classification accuracy than DWT. SWT and DWT decomposition techniques registered 99.5% and 97.5% highest classification accuracies, respectively.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [1] Automatic epileptic seizure detection algorithm based on dual density dual tree complex wavelet transform
    Kang T.
    Zuo R.
    Zhong L.
    Chen W.
    Zhang H.
    Liu H.
    Lai D.
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (06): : 1035 - 1042
  • [2] Epileptic seizure detection based on imbalanced classification and wavelet packet transform
    Yuan, Qi
    Zhou, Weidong
    Zhang, Liren
    Zhang, Fan
    Xu, Fangzhou
    Leng, Yan
    Wei, Dongmei
    Chen, Meina
    [J]. SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 50 : 99 - 108
  • [3] Detection of Epileptic Seizure Using Wavelet Transform and Neural Network Classifier
    Wani, S. M.
    Sabut, S.
    Nalbalwar, S. L.
    [J]. COMPUTING, COMMUNICATION AND SIGNAL PROCESSING, ICCASP 2018, 2019, 810 : 739 - 747
  • [4] Epileptic Seizure Detection using Deep Ensemble Network with Empirical Wavelet Transform
    Panda, Sreelekha
    Das, Abhishek
    Mishra, Satyasis
    Mohanty, Mihir Narayan
    [J]. MEASUREMENT SCIENCE REVIEW, 2021, 21 (04) : 110 - 116
  • [5] EPILEPTIC SEIZURE DETECTION IN EEG SIGNALS USING MULTIFRACTAL ANALYSIS AND WAVELET TRANSFORM
    Uthayakumar, R.
    Easwaramoorthy, D.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (02)
  • [6] Epileptic Seizure Detection from EEG Signals by Using Wavelet and Hilbert Transform
    Polat, Hasan
    Ozerdem, Mehmet Sirac
    [J]. 2016 XII INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2016, : 66 - 69
  • [7] EPILEPTIC SEIZURE DETECTION USING A NEURAL NETWORK ENSEMBLE METHOD AND WAVELET TRANSFORM
    Ebrahimpour, Reza
    Babakhani, Kioumars
    Arani, Seyed Ali Asghar Abbaszadeh
    Masoudnia, Saeed
    [J]. NEURAL NETWORK WORLD, 2012, 22 (03) : 291 - 310
  • [8] Automatic Epileptic Seizure Detection in EEG Using Nonsubsampled Wavelet–Fourier Features
    Guangyi Chen
    Wenfang Xie
    Tien D. Bui
    Adam Krzyżak
    [J]. Journal of Medical and Biological Engineering, 2017, 37 : 123 - 131
  • [9] Epileptic Seizure Detection Using Discrete Wavelet Transform Based Support Vector Machine
    Deshmukh, Prashant
    Ingle, Rahul
    Kehri, Vikram
    Awale, R. N.
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 1933 - 1937
  • [10] A comparative study of feature ranking techniques for epileptic seizure detection using wavelet transform
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2016, 53 : 163 - 176