Size of the largest cluster under zero-range invariant measures

被引:0
|
作者
Jeon, I [1 ]
March, P [1 ]
Pittel, B [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
来源
ANNALS OF PROBABILITY | 2000年 / 28卷 / 03期
关键词
zero-range process; equilibrium measure; cluster size; random partition; local limit theorem;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the finite zero-range process with occupancy-dependent rate function g(.). Under the invariant measure, which can be written explicitly in terms of g, particles are distributed over sites and we regard all particles at a fixed site as a cluster. In the density one case, that; is, equal numbers of particles and sites, we determine asymptotically the size of the largest cluster, as the number of particles tends to infinity, and determine? its dependence on the rate function.
引用
收藏
页码:1162 / 1194
页数:33
相关论文
共 50 条
  • [1] SIZE OF THE CLUSTERS UNDER LOW DENSITY ZERO-RANGE INVARIANT MEASURES
    Jeon, Intae
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (04): : 813 - 826
  • [3] DENSITY FLUCTUATIONS FOR A ZERO-RANGE PROCESS ON THE PERCOLATION CLUSTER
    Goncalves, Patricia
    Jara, Milton
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 382 - 395
  • [4] Finite Size Effects and Metastability in Zero-Range Condensation
    Paul Chleboun
    Stefan Grosskinsky
    [J]. Journal of Statistical Physics, 2010, 140 : 846 - 872
  • [5] Finite Size Effects and Metastability in Zero-Range Condensation
    Chleboun, Paul
    Grosskinsky, Stefan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (05) : 846 - 872
  • [6] Convergence to the maximal invariant measure for a zero-range process with random rates
    Andjel, ED
    Ferrari, PA
    Guiol, H
    Landim, C
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (01) : 67 - 81
  • [7] Finite-size effects in dynamics of zero-range processes
    Juntunen, Janne
    Pulkkinen, Otto
    Merikoski, Juha
    [J]. PHYSICAL REVIEW E, 2010, 82 (03):
  • [8] Finite-size effects on the dynamics of the zero-range process
    Gupta, Shamik
    Barma, Mustansir
    Majumdar, Satya N.
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [9] INVARIANT-MEASURES FOR THE ZERO RANGE PROCESS
    ANDJEL, ED
    [J]. ANNALS OF PROBABILITY, 1982, 10 (03): : 525 - 547
  • [10] Coarsening in zero-range processes
    Armendáriz, Inés
    Beltrán, Johel
    Cuesta, Daniela
    Jara, Milton
    [J]. Stochastic Processes and their Applications, 2025, 179