Classification of patients with bipolar disorder using k-means clustering

被引:26
|
作者
de la Fuente-Tomas, Lorena [1 ,2 ]
Arranz, Belen [1 ,3 ,4 ]
Safont, Gemma [1 ,4 ,5 ]
Sierra, Pilar [6 ,7 ]
Sanchez-Autet, Monica [3 ,4 ]
Garcia-Blanco, Ana [6 ,7 ]
Garcia-Portilla, Maria P. [1 ,2 ]
机构
[1] Fondos FEDER, Ctr Invest Biomed Red Salud Mental CIBERSAM, Inst Salud Carlos III, Madrid, Spain
[2] Univ Oviedo, Dept Psychiat, Oviedo, Spain
[3] Parc Sanitari St Joan Deu, Barcelona, Spain
[4] Univ Barcelona, Barcelona, Spain
[5] Univ Hosp Mutua Terrassa, Barcelona, Spain
[6] La Fe Univ & Polytech Hosp, Valencia, Spain
[7] Univ Valencia, Valencia, Spain
来源
PLOS ONE | 2019年 / 14卷 / 01期
关键词
VS; LATE-STAGE; METABOLIC SYNDROME; SPANISH VERSIONS; QUALITY; MODEL; DEPRESSION; ILLNESS; RELIABILITY; COGNITION;
D O I
10.1371/journal.pone.0210314
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction Bipolar disorder (BD) is a heterogeneous disorder needing personalized and shared decisions. We aimed to empirically develop a cluster-based classification that allocates patients according to their severity for helping clinicians in these processes. Methods Naturalistic, cross-sectional, multicenter study. We included 224 subjects with BD (DSM-IV-TR) under outpatient treatment from 4 sites in Spain. We obtained information on sociodemography, clinical course, psychopathology, cognition, functioning, vital signs, anthropometry and lab analysis. Statistical analysis: k-means clustering, comparisons of between group variables, and expert criteria. Results and discussion We obtained 12 profilers from 5 life domains that classified patients in five clusters. The profilers were: Number of hospitalizations and of suicide attempts, comorbid personality disorder, body mass index, metabolic syndrome, the number of comorbid physical illnesses, cognitive functioning, being permanently disabled due to BD, global and leisure time functioning, and patients' perception of their functioning and mental health. We obtained preliminary evidence on the construct validity of the classification: (1) all the profilers behaved correctly, significantly increasing in severity as the severity of the clusters increased, and (2) more severe clusters needed more complex pharmacological treatment. Conclusions We propose a new, easy-to-use, cluster-based severity classification for BD that may help clinicians in the processes of personalized medicine and shared decision-making.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Classification of Moving Vehicles using K-Means Clustering
    Changalasetty, Suresh Babu
    Thota, Lalitha Saroja
    Badawy, Ahmed Said
    Ghribi, Wade
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES, 2015,
  • [2] Sleep stages identification in patients with sleep disorder using k-means clustering
    Fadhlullah, M. U.
    Resahya, A.
    Nugraha, D. F.
    Yulita, I. N.
    [J]. 4TH INTERNATIONAL SEMINAR OF MATHEMATICS, SCIENCE AND COMPUTER SCIENCE EDUCATION, 2018, 1013
  • [3] Acute Leukemia Classification by Using SVM and K-Means Clustering
    Laosai, Jakkrich
    Chamnongthai, Kosin
    [J]. 2014 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2014,
  • [4] Android Malware Classification Using K-Means Clustering Algorithm
    Hamid, Isredza Rahmi A.
    Khalid, Nur Syafiqah
    Abdullah, Nurul Azma
    Ab Rahman, Nurul Hidayah
    Wen, Chuah Chai
    [J]. INTERNATIONAL RESEARCH AND INNOVATION SUMMIT (IRIS2017), 2017, 226
  • [5] Opinion Classification Using Maximum Entropy and K-Means Clustering
    Hamzah, Amir
    Widyastuti, Naniek
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEMS (ICTS), 2016, : 162 - 166
  • [6] Using Classification with K-means Clustering to Investigate Transaction Anomaly
    Tan, Xing Scott
    Yang, Zijiang
    Benlimane, Younes
    Liu, Eric
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 171 - 174
  • [7] Comparing document classification schemes using K-means clustering
    Silic, Artur
    Moens, Marie-Francine
    Zmak, Lovro
    Basic, Bojana Dalbelo
    [J]. KNOWLEDGE - BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2008, 5177 : 615 - +
  • [8] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [9] Spectral Classification of Retinal Features Using K-Means Clustering Algorithm
    Cho, Julie
    Kashani, Amir H.
    Humayun, Mark S.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [10] Poverty Classification Using Analytic Hierarchy Process and K-Means Clustering
    Sarwosri
    Sunaryono, Dwi
    Akbar, Rizky Januar
    Setiyawan, Risky Dwi
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEMS (ICTS), 2016, : 266 - 269