Formation of an ordered pattern of Bi nanolines on InAs(100) by self-assembly

被引:15
|
作者
Ahola-Tuomi, M. [1 ]
Laukkanen, P. [1 ]
Punkkinen, M. P. J. [1 ]
Perala, R. E. [1 ]
Vayrynen, I. J. [1 ]
Kuzmin, M. [2 ]
Schulte, K. [3 ]
Pessa, M. [4 ]
机构
[1] Univ Turku, Dept Phys, FIN-20014 Turku, Finland
[2] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Tampere Univ Technol, Optoelect Res Ctr, FIN-33101 Tampere, Finland
关键词
D O I
10.1063/1.2831691
中图分类号
O59 [应用物理学];
学科分类号
摘要
Self-assembly of uniform patterns of nanolines over large surface areas has been proven to be difficult. The authors report that bismuth (Bi) adsorbate self-assembles into an ordered pattern of Bi nanolines separated by 4.3 nm on the Bi-stabilized InAs(100)(2x1). The resulted nanoline surface is studied by scanning tunneling microscopy (STM) and low-energy electron diffraction. The plausible atomic models for the Bi nanolines are proposed on the basis of the STM results. The Bi lines are suggested to consist of two chains of adjacent Bi dimers positioned parallel to the chain and parallel to the Bi dimers of the (2x1) substrate. (c) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Electronic structure of Bi nanolines on InAs(100)
    Nafday, Dhani
    Richter, Christine
    Heckmann, Olivier
    Wang, Weimin
    Mariot, Jean-Michel
    Djukic, Uros
    Vobornik, Ivana
    Lefevre, Patrick
    Taleb-Ibrahimi, Amina
    Rault, Julien
    Nicolai, Laurent
    Ong, Chin Shen
    Thunstrom, Patrik
    Hricovini, Karol
    Minar, Jan
    Di Marco, Igor
    [J]. APPLIED SURFACE SCIENCE, 2023, 611
  • [2] Formation of ordered nanocluster arrays by self-assembly on nanopatterned Si(100) surfaces
    Winningham, TA
    Gillis, HP
    Choutov, DA
    Martin, KP
    Moore, JT
    Douglas, K
    [J]. SURFACE SCIENCE, 1998, 406 (1-3) : 221 - 228
  • [3] Density-functional calculations for self-assembled Bi-nanolines on the InAs(100) surface
    AlZahrani, A. Z.
    Srivastava, G. P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
  • [4] Formation of a large-scale ordered honeycomb pattern by an organogelator via a self-assembly process
    Zhang, Mingming
    Sun, Shengtong
    Yu, Xudong
    Cao, Xinhua
    Zou, Ying
    Yi, Tao
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (20) : 3553 - 3555
  • [5] Formation of macroscopically ordered carbon nanotube membranes by self-assembly
    Shimoda, H
    Fleming, L
    Horton, K
    Zhou, O
    [J]. PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 135 - 136
  • [6] Formation of Ordered Biomolecular Structures by the Self-assembly of Short Peptides
    Yuran, Sivan
    Reches, Meital
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (81):
  • [7] Pattern formation in the axon: self-assembly of actin rings
    Pringle, Helen
    Hawkins, Rhoda J.
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 167 - 167
  • [8] Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant
    Lewis, Ryan B.
    Corfdir, Pierre
    Herranz, Jesus
    Kuepers, Hanno
    Jahn, Uwe
    Brandt, Oliver
    Geelhaar, Lutz
    [J]. NANO LETTERS, 2017, 17 (07) : 4255 - 4260
  • [9] Architecture in the microcosm: biocolloids, self-assembly and pattern formation
    Hemsley, AR
    Griffiths, PC
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 358 (1766): : 547 - 564
  • [10] Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly
    Moore, Tyler G.
    Garzon, Max H.
    Deaton, Russell J.
    [J]. PLOS ONE, 2015, 10 (09):