An instrument's sensitivity to detect individual-level change is an important consideration for both psychometric and clinical researchers. In this article, we develop a cognitive problems measure and evaluate its sensitivity to detect change from an item response theory (IRT) perspective. After illustrating assumption checking and model fit assessment, we detail 4 features of IRT modeling: (a) the scale information curve and its relation to the bandwidth of measurement precision, (b) the scale response curve and how it is used to link the latent trait metric with the raw score metric, (c) content-based versus norm-based score referencing, and (d) the level of measurement of the latent trait scale. We conclude that IRT offers an informative, alternative framework for understanding an instrument's psychometric properties and recommend that IRT analyses be considered prior to investigations of change, growth, of the effectiveness of clinical interventions.