Weyl calculus

被引:0
|
作者
不详
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the case that a system A = (A(1),...,A(n)) of n bounded linear operators satisfies growth estimates for exponentials of the operators, functions f (A) of A can be formed by a type of Fourier inversion. The mapping f -> f (A) is called the Weyl functional calculus. The basic idea and properties of the Weyl calculus are outlined in this chapter before considering systems A for which the growth estimates for exponentials may fail.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [1] The automorphic Weyl calculus
    Unterberger, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 729 - 734
  • [2] WEYL FRACTIONAL CALCULUS
    RAINA, RK
    KOUL, CL
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (02) : 188 - 192
  • [3] The magnetic Weyl calculus
    Mantoiu, M
    Purice, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (04) : 1394 - 1417
  • [4] WEYL CALCULUS OF PSEUDODIFFERENTIAL OPERATORS
    HORMANDER, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (03) : 359 - 443
  • [5] STRUCTURE CONSTANTS OF THE WEYL CALCULUS
    Deng, Wen
    [J]. MATHEMATICA SCANDINAVICA, 2013, 112 (01) : 112 - 128
  • [6] The Weyl calculus and the zeta function
    Unterberger, Andre
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (11-12) : 607 - 610
  • [7] WEYL CALCULUS AND SUBELLIPTIC OPERATORS
    CANCELIER, CE
    CHEMIN, JY
    XU, CJ
    [J]. ANNALES DE L INSTITUT FOURIER, 1993, 43 (04) : 1157 - 1178
  • [8] Composition formulas in the Weyl calculus
    Kobayashi, Toshiyuki
    Orsted, Bent
    Pevzner, Michael
    Unterberger, Andre
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) : 948 - 991
  • [9] The Weyl-Hormander Calculus
    Parmeggiani, Alberto
    [J]. SPECTRAL THEORY OF NON-COMMUTATIVE HARMONIC OSCILLATORS: AN INTRODUCTION, 2010, 1992 : 15 - 53
  • [10] The Weyl calculus and Clifford analysis
    Jefferies, B
    McIntosh, A
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (02) : 329 - 341