Modular case of Levinson's theorem

被引:5
|
作者
Bernard, Damien [1 ]
机构
[1] Univ Blaise Pascal, Math Lab, F-63171 Aubiere, France
关键词
L-function; modular form; non-trivial zeros; proportion; Levinson; shifted convolution sums; integral moments; mollified second moment; RIEMANN ZETA-FUNCTION; SELBERG L-FUNCTIONS; FOURIER COEFFICIENTS; CRITICAL LINE; ZEROS; SQUARE; 4TH;
D O I
10.4064/aa167-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We evaluate the integral mollified second moment of L-functions of primitive cusp forms and we obtain, for such L-functions, an explicit positive proportion of zeros which lie on the critical line. Copyright © 2007-2014 by IMPAN. All rights reserved.
引用
收藏
页码:201 / 237
页数:37
相关论文
共 50 条
  • [1] ON THE LEVINSON THEOREM IN THE MULTICHANNEL CASE
    GHIRARDI, GC
    PAURI, M
    ANNALS OF PHYSICS, 1963, 21 (02) : 401 - 407
  • [2] Levinson's theorem for graphs
    Childs, Andrew M.
    Strouse, D. J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [3] Levinson's Theorem: An Index Theorem in Scattering Theory
    Richard, S.
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 149 - 203
  • [4] Levinson's theorem for a Dirac system
    Clemence, D.P.
    Inverse Problems, 1990, 6 (06)
  • [5] A generalization of Levinson’s uniqueness theorem to the case of general boundary conditions
    V. A. Sadovnichii
    Ya. T. Sultanaev
    A. M. Akhtyamov
    Doklady Mathematics, 2014, 90 : 715 - 718
  • [6] A generalization of Levinson's uniqueness theorem to the case of general boundary conditions
    Sadovnichii, V. A.
    Sultanaev, Ya. T.
    Akhtyamov, A. M.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 715 - 718
  • [7] A short proof of Levinson's theorem
    Young, Matthew P.
    ARCHIV DER MATHEMATIK, 2010, 95 (06) : 539 - 548
  • [8] Levinson's theorem as an index pairing
    Alexander, Angus
    Rennie, Adam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (05)
  • [9] Levinson's theorem for graphs II
    Childs, Andrew M.
    Gosset, David
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [10] A short proof of Levinson’s theorem
    Matthew P. Young
    Archiv der Mathematik, 2010, 95 : 539 - 548