On general (α, β)-metrics with isotropic S-curvature

被引:13
|
作者
Zhu, Hongmei [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Finsler metric; General; (alpha; beta)-metric; Isotropic S-curvature; SYMMETRIC FINSLER METRICS; FLAG CURVATURE; MANIFOLDS; GEOMETRY;
D O I
10.1016/j.jmaa.2018.04.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The S-curvature is an important non-Riemannian quantity in Finsler geometry. In this paper. we study a class of Finsler metrics called general (alpha, beta)-metrics, which are defined by a Riemannian metric a and a 1-form beta. We characterize all of general (alpha, beta)-metrics with isotropic S-curvature. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1127 / 1142
页数:16
相关论文
共 50 条
  • [1] On Randers Metrics with Isotropic S-Curvature
    Zhong Min SHEN Department of Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (05) : 789 - 796
  • [2] S-curvature of isotropic Berwald metrics
    Tayebi, Akbar
    Rafie-Rad, Mehdi
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12): : 2198 - 2204
  • [3] On Randers metrics with isotropic S-curvature
    Zhong Min Shen
    Hao Xing
    [J]. Acta Mathematica Sinica, English Series, 2008, 24 : 789 - 796
  • [4] On randers metrics with isotropic S-curvature
    Shen, Zhong Min
    Xing, Hao
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (05) : 789 - 796
  • [5] S-curvature of isotropic Berwald metrics
    Akbar Tayebi
    Mehdi Rafie-Rad
    [J]. Science in China Series A: Mathematics, 2008, 51 : 2198 - 2204
  • [6] S-curvature of isotropic Berwald metrics
    Akbar TAYEBI
    Mehdi RAFIE-RAD
    [J]. Science China Mathematics, 2008, (12) : 2198 - 2204
  • [7] A class of Finsler metrics with isotropic S-curvature
    Xinyue Cheng
    Zhongmin Shen
    [J]. Israel Journal of Mathematics, 2009, 169 : 317 - 340
  • [8] On Randers metrics of isotropic S-curvature II
    Yang, Guojun
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (01): : 71 - 87
  • [9] A CLASS OF FINSLER METRICS WITH ISOTROPIC S-CURVATURE
    Cheng, Xinyue
    Shen, Zhongmin
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2009, 169 (01) : 317 - 340
  • [10] On locally dually flat (α, β)-metrics with isotropic S-curvature
    A. Tayebi
    E. Peyghan
    H. Sadeghi
    [J]. Indian Journal of Pure and Applied Mathematics, 2012, 43 : 521 - 534