Realised quantile-based estimation of the integrated variance

被引:65
|
作者
Christensen, Kim [2 ]
Oomen, Roel [1 ,3 ]
Podolskij, Mark [2 ,4 ]
机构
[1] Deutsch Bank AG, London EC2N 2DB, England
[2] Aarhus Univ, CREATES, Sch Econ & Management, DK-8000 Aarhus, Denmark
[3] Univ Amsterdam, Dept Quantitat Econ, NL-1012 WX Amsterdam, Netherlands
[4] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
新加坡国家研究基金会;
关键词
Finite activity jumps; Market microstructure noise; Order statistics; Outliers; Realised variance; CONTINUOUS-TIME MODELS; MICROSTRUCTURE NOISE; VOLATILITY; MARKET; JUMPS; PRICES; FUNCTIONALS; ELECTRICITY; RETURNS;
D O I
10.1016/j.jeconom.2010.04.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a new jump-robust quantile-based realised variance measure of ex post return variation that can be computed using potentially noisy data. The estimator is consistent for the integrated variance and we present feasible central limit theorems which show that it converges at the best attainable rate and has excellent efficiency. Asymptotically, the quantile-based realised variance is immune to finite activity jumps and outliers in the price series, while in modified form the estimator is applicable with market microstructure noise and therefore operational on high-frequency data. Simulations show that it has superior robustness properties in finite sample, while an empirical application illustrates its use on equity data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 98
页数:25
相关论文
共 50 条
  • [1] Bayesian estimation of a quantile-based factor model
    Redivo, Edoardo
    Viroli, Cinzia
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024,
  • [2] Nonparametric estimation of quantile-based entropy function
    Subhash, Silpa
    Sunoj, S. M.
    Sankaran, P. G.
    Rajesh, G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (05) : 1805 - 1821
  • [3] A New Quantile-Based Approach for LASSO Estimation
    Shah, Ismail
    Naz, Hina
    Ali, Sajid
    Almohaimeed, Amani
    Lone, Showkat Ahmad
    [J]. MATHEMATICS, 2023, 11 (06)
  • [4] Kernel quantile-based estimation of expected shortfall
    Yu, Keming
    Ally, Abdallah K.
    Yang, Shanchao
    Hand, David J.
    [J]. JOURNAL OF RISK, 2010, 12 (04): : 15 - 32
  • [5] Weighted quantile-based estimation for a class of transformation distributions
    Rayner, GD
    MacGillivray, HL
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (04) : 401 - 433
  • [6] Nonparametric frontier estimation: A conditional quantile-based approach
    Aragon, Y
    Daouia, A
    Thomas-Agnan, C
    [J]. ECONOMETRIC THEORY, 2005, 21 (02) : 358 - 389
  • [7] Quantile-Based Estimation of the Finite Cauchy Mixture Model
    Kalantan, Zakiah I.
    Einbeck, Jochen
    [J]. SYMMETRY-BASEL, 2019, 11 (09): : 1 - 19
  • [8] Quantile-based smooth transition value at risk estimation
    Hubner, Stefan
    Cizek, Pavel
    [J]. ECONOMETRICS JOURNAL, 2019, 22 (03): : 241 - +
  • [9] Quantile-based clustering
    Hennig, Christian
    Viroli, Cinzia
    Anderlucci, Laura
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 4849 - 4883
  • [10] Quantile-based classifiers
    Hennig, C.
    Viroli, C.
    [J]. BIOMETRIKA, 2016, 103 (02) : 435 - 446