Subscalarity of (p, k)-quasihyponormal operators

被引:6
|
作者
Jung, Sungeun [1 ]
Ko, Eungil [1 ]
Lee, Mee-Jung [1 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
关键词
(p; k)-Quasihyponormal operator; p-Hyponormal operator; Algebraic operator; Invariant subspace; Subscalar operator; P-HYPONORMAL OPERATORS; (P; K)-QUASIHYPONORMAL OPERATORS; INVARIANT SUBSPACES; SPECTRUM;
D O I
10.1016/j.jmaa.2011.02.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that every (p, k)-quasihyponormal operator has a scalar extension and give some spectral properties of the scalar extensions of (p,k)-quasihyponormal operators. As a corollary, we get that such an operator with rich spectrum has a nontrivial invariant subspace. Finally, we prove that the sum of a p-hyponormal operator and an algebraic operator which are commuting is subscalar. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [1] On (p,k)-quasihyponormal operators
    Kim, IH
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (04): : 629 - 638
  • [2] Isolated points of spectrum of (p,k)-quasihyponormal operators
    Tanahashi, K
    Uchiyama, A
    Cho, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 382 : 221 - 229
  • [3] Quasinilpotent Part of class A or (p, k) quasihyponormal Operators
    Tanahashi, Kotaro
    Jeon, In Ho
    Kim, In Hyoun
    Uchiyama, Atsushi
    [J]. RECENT ADVANCES IN OPERATOR THEORY AND APPLICATIONS, 2009, 187 : 199 - +
  • [4] Paranormal and (p, k)-quasihyponormal operators: Spectral continuity
    Duggal B.P.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2007, 56 (1) : 57 - 64
  • [5] Essential spectra of quasisimilar (p, k)-quasihyponormal operators
    Kim, An-Hyun
    Kim, In Hyoun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [6] The Fuglede-Putnam theorem for (p,k)-quasihyponormal operators
    Kim, In Hyoun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1) : 1 - 7
  • [7] On p-quasihyponormal operators and quasisimilarity
    Jeon, IH
    Lee, JI
    Uchiyama, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (02): : 309 - 315
  • [8] k-Quasihyponormal operators are subscalar
    Ko, E
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 28 (04) : 492 - 499
  • [9] k-Quasihyponormal operators are subscalar
    Eungil Ko
    [J]. Integral Equations and Operator Theory, 1997, 28 : 492 - 499
  • [10] SUBSCALARITY OF k-QUASI-CLASS A OPERATORS
    Rashid, M. H. M.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (02): : 177 - 188