The PERSIANN family of global satellite precipitation data: a review and evaluation of products

被引:153
|
作者
Phu Nguyen [1 ,2 ]
Ombadi, Mohammed [1 ]
Sorooshian, Soroosh [1 ]
Hsu, Kuolin [1 ,3 ]
AghaKouchak, Amir [1 ]
Braithwaite, Dan [1 ]
Ashouri, Hamed [1 ]
Thorstensen, Andrea Rose [1 ]
机构
[1] Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA
[2] Nong Lam Univ, Dept Water Management, Ho Chi Minh City, Vietnam
[3] NTOU, CEOE, Keelung, Taiwan
基金
美国国家科学基金会;
关键词
MEASURING MISSION TRMM; NEURAL-NETWORK; DAILY RAINFALL; PASSIVE MICROWAVE; IMAGERY; IDENTIFICATION; SIMULATION; MODEL;
D O I
10.5194/hess-22-5801-2018
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Over the past 2 decades, a wide range of studies have incorporated Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products. Currently, PERSIANN offers several precipitation products based on different algorithms available at various spatial and temporal scales, namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the contiguous US (CONUS) at different spatial and temporal scales using Climate Prediction Center (CPC) unified gauge-based analysis as a benchmark. Due to limitations of the baseline dataset (CPC), daily scale is the finest temporal scale used for the evaluation over CONUS. Additionally, we provide a comparison of the available products at a quasi-global scale. Finally, we highlight the strengths and limitations of the PERSIANN products and briefly discuss expected future developments.
引用
收藏
页码:5801 / 5816
页数:16
相关论文
共 50 条
  • [1] The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data
    Phu Nguyen
    Eric J. Shearer
    Hoang Tran
    Mohammed Ombadi
    Negin Hayatbini
    Thanh Palacios
    Phat Huynh
    Dan Braithwaite
    Garr Updegraff
    Kuolin Hsu
    Bob Kuligowski
    Will S. Logan
    Soroosh Sorooshian
    [J]. Scientific Data, 6
  • [2] The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data
    Phu Nguyen
    Shearer, Eric J.
    Hoang Tran
    Ombadi, Mohammed
    Hayatbini, Negin
    Palacios, Thanh
    Phat Huynh
    Braithwaite, Dan
    Updegraff, Garr
    Hsu, Kuolin
    Kuligowski, Bob
    Logan, Will S.
    Sorooshian, Soroosh
    [J]. SCIENTIFIC DATA, 2019, 6 (1)
  • [3] Correction to: Spatiotemporal assessment of the PERSIANN family of satellite precipitation data over Fars Province, Iran
    Narjes Salmani-Dehaghi
    Nozar Samani
    [J]. Theoretical and Applied Climatology, 2019, 138 : 1359 - 1359
  • [4] Evaluation of PERSIANN family remote sensing precipitation products for snowmelt runoff estimation in a mountainous basin
    Uysal, Gokcen
    Sorman, Ali Unal
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2021, 66 (12): : 1790 - 1807
  • [5] Global Evaluation of Gridded Satellite Precipitation Products from the NOAA Climate Data Record Program
    Prat, Olivier P.
    Nelson, Brian R.
    Nickl, Elsa
    Leeper, Ronald D.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2021, 22 (09) : 2291 - 2310
  • [6] Satellite-Based Precipitation Measurement Using PERSIANN System
    Hsu, Kuo-Lin
    Sorooshian, Soroosh
    [J]. HYDROLOGICAL MODELLING AND THE WATER CYCLE: COUPLING THE ATMOSHERIC AND HYDROLOGICAL MODELS, 2008, 63 : 27 - 48
  • [7] Spatiotemporal assessment of the PERSIANN family of satellite precipitation data over Fars Province, Iran (vol 138, pg 1333, 2019)
    Salmani-Dehaghi, Narjes
    Samani, Nozar
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 138 (3-4) : 1359 - 1359
  • [8] Evaluation of Precipitation Estimates from Remote Sensing and Artificial Neural Network Based Products (PERSIANN) Family in an Arid Region
    Baig, Faisal
    Abrar, Muhammad
    Chen, Haonan
    Sherif, Mohsen
    [J]. REMOTE SENSING, 2023, 15 (04)
  • [9] Evaluation of Three Satellite Precipitation Products TRMM 3B42, CMORPH, and PERSIANN over a Subtropical Watershed in China
    Liu, Junzhi
    Duan, Zheng
    Jiang, Jingchao
    Zhu, A-Xing
    [J]. ADVANCES IN METEOROLOGY, 2015, 2015
  • [10] satellite Global Satellite Mapping of Precipitation (GSMaP) - Design and Products
    Ushio, Tomoo
    Mega, Tomoaki
    Kubota, Takuji
    [J]. 2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,